Cargando…
Performance of joint modelling of time-to-event data with time-dependent predictors: an assessment based on transition to psychosis data
Joint modelling has emerged to be a potential tool to analyse data with a time-to-event outcome and longitudinal measurements collected over a series of time points. Joint modelling involves the simultaneous modelling of the two components, namely the time-to-event component and the longitudinal com...
Autores principales: | Yuen, Hok Pan, Mackinnon, Andrew |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5075698/ https://www.ncbi.nlm.nih.gov/pubmed/27781169 http://dx.doi.org/10.7717/peerj.2582 |
Ejemplares similares
-
Prediction of transition to psychosis from an at-risk mental state using structural neuroimaging, genetic, and environmental data
por: Tavares, Vânia, et al.
Publicado: (2023) -
Early Somatosensory Processing Over Time in Individuals at Risk to Develop Psychosis
por: Hagenmuller, Florence, et al.
Publicado: (2019) -
Physical Health Problems in Psychosis: Is It Time to Consider the Views of Family Carers?
por: Onwumere, Juliana, et al.
Publicado: (2018) -
Joint modeling of longitudinal and time-to-event data
por: Elashoff, Robert, et al.
Publicado: (2016) -
Joint models for longitudinal and time-to-event data : with applications in R
por: Rizopoulos, Dimitris
Publicado: (2012)