Cargando…
Beech cupules as keystone structures for soil fauna
Facilitative or positive interactions are ubiquitous in nature and play a fundamental role in the configuration of ecological communities. In particular, habitat modification and niche construction, in which one organism locally modifies abiotic conditions and favours other organisms by buffering th...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5075700/ https://www.ncbi.nlm.nih.gov/pubmed/27781162 http://dx.doi.org/10.7717/peerj.2562 |
_version_ | 1782461915176370176 |
---|---|
author | Melguizo-Ruiz, Nereida Jiménez-Navarro, Gerardo Moya-Laraño, Jordi |
author_facet | Melguizo-Ruiz, Nereida Jiménez-Navarro, Gerardo Moya-Laraño, Jordi |
author_sort | Melguizo-Ruiz, Nereida |
collection | PubMed |
description | Facilitative or positive interactions are ubiquitous in nature and play a fundamental role in the configuration of ecological communities. In particular, habitat modification and niche construction, in which one organism locally modifies abiotic conditions and favours other organisms by buffering the effects of adverse environmental factors, are among the most relevant facilitative interactions. In line with this, ‘keystone structures’, which provide resources, refuge, or advantageous services decisive for other species, may allow the coexistence of various species and thus considerably contribute to diversity maintenance. Beech cupules are woody husks harbouring beech fruits that remain in the forest soil for relatively long periods of time. In this study, we explored the potential role of these cupules in the distribution and maintenance of the soil fauna inhabiting the leaf litter layer. We experimentally manipulated cupule availability and soil moisture in the field to determine if such structures are limiting and can provide moist shelter to soil animals during drought periods, contributing to minimize desiccation risks. We measured invertebrate abundances inside relative to outside the cupules, total abundances in the leaf litter and animal body sizes, in both dry and wet experimental plots. We found that these structures are preferentially used by the most abundant groups of smaller soil animals—springtails, mites and enchytraeids—during droughts. Moreover, beech cupules can be limiting, as an increase in use was found with higher cupule densities, and are important resources for many small soil invertebrates, driving the spatial structure of the soil community and promoting higher densities in the leaf litter, probably through an increase in habitat heterogeneity. We propose that fruit woody structures should be considered ‘keystone structures’ that contribute to soil community maintenance. Therefore, beech trees may indirectly facilitate soil fauna activities through their decaying fruit husks, hence acting as ecosystem engineers. |
format | Online Article Text |
id | pubmed-5075700 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | PeerJ Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-50757002016-10-25 Beech cupules as keystone structures for soil fauna Melguizo-Ruiz, Nereida Jiménez-Navarro, Gerardo Moya-Laraño, Jordi PeerJ Ecology Facilitative or positive interactions are ubiquitous in nature and play a fundamental role in the configuration of ecological communities. In particular, habitat modification and niche construction, in which one organism locally modifies abiotic conditions and favours other organisms by buffering the effects of adverse environmental factors, are among the most relevant facilitative interactions. In line with this, ‘keystone structures’, which provide resources, refuge, or advantageous services decisive for other species, may allow the coexistence of various species and thus considerably contribute to diversity maintenance. Beech cupules are woody husks harbouring beech fruits that remain in the forest soil for relatively long periods of time. In this study, we explored the potential role of these cupules in the distribution and maintenance of the soil fauna inhabiting the leaf litter layer. We experimentally manipulated cupule availability and soil moisture in the field to determine if such structures are limiting and can provide moist shelter to soil animals during drought periods, contributing to minimize desiccation risks. We measured invertebrate abundances inside relative to outside the cupules, total abundances in the leaf litter and animal body sizes, in both dry and wet experimental plots. We found that these structures are preferentially used by the most abundant groups of smaller soil animals—springtails, mites and enchytraeids—during droughts. Moreover, beech cupules can be limiting, as an increase in use was found with higher cupule densities, and are important resources for many small soil invertebrates, driving the spatial structure of the soil community and promoting higher densities in the leaf litter, probably through an increase in habitat heterogeneity. We propose that fruit woody structures should be considered ‘keystone structures’ that contribute to soil community maintenance. Therefore, beech trees may indirectly facilitate soil fauna activities through their decaying fruit husks, hence acting as ecosystem engineers. PeerJ Inc. 2016-10-19 /pmc/articles/PMC5075700/ /pubmed/27781162 http://dx.doi.org/10.7717/peerj.2562 Text en ©2016 Melguizo-Ruiz et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. |
spellingShingle | Ecology Melguizo-Ruiz, Nereida Jiménez-Navarro, Gerardo Moya-Laraño, Jordi Beech cupules as keystone structures for soil fauna |
title | Beech cupules as keystone structures for soil fauna |
title_full | Beech cupules as keystone structures for soil fauna |
title_fullStr | Beech cupules as keystone structures for soil fauna |
title_full_unstemmed | Beech cupules as keystone structures for soil fauna |
title_short | Beech cupules as keystone structures for soil fauna |
title_sort | beech cupules as keystone structures for soil fauna |
topic | Ecology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5075700/ https://www.ncbi.nlm.nih.gov/pubmed/27781162 http://dx.doi.org/10.7717/peerj.2562 |
work_keys_str_mv | AT melguizoruiznereida beechcupulesaskeystonestructuresforsoilfauna AT jimeneznavarrogerardo beechcupulesaskeystonestructuresforsoilfauna AT moyalaranojordi beechcupulesaskeystonestructuresforsoilfauna |