Cargando…

Optimal Universal Uncertainty Relations

We study universal uncertainty relations and present a method called joint probability distribution diagram to improve the majorization bounds constructed independently in [Phys. Rev. Lett. 111, 230401 (2013)] and [J. Phys. A. 46, 272002 (2013)]. The results give rise to state independent uncertaint...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Tao, Xiao, Yunlong, Ma, Teng, Fei, Shao-Ming, Jing, Naihuan, Li-Jost, Xianqing, Wang, Zhi-Xi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5075915/
https://www.ncbi.nlm.nih.gov/pubmed/27775010
http://dx.doi.org/10.1038/srep35735
_version_ 1782461947445248000
author Li, Tao
Xiao, Yunlong
Ma, Teng
Fei, Shao-Ming
Jing, Naihuan
Li-Jost, Xianqing
Wang, Zhi-Xi
author_facet Li, Tao
Xiao, Yunlong
Ma, Teng
Fei, Shao-Ming
Jing, Naihuan
Li-Jost, Xianqing
Wang, Zhi-Xi
author_sort Li, Tao
collection PubMed
description We study universal uncertainty relations and present a method called joint probability distribution diagram to improve the majorization bounds constructed independently in [Phys. Rev. Lett. 111, 230401 (2013)] and [J. Phys. A. 46, 272002 (2013)]. The results give rise to state independent uncertainty relations satisfied by any nonnegative Schur-concave functions. On the other hand, a remarkable recent result of entropic uncertainty relation is the direct-sum majorization relation. In this paper, we illustrate our bounds by showing how they provide a complement to that in [Phys. Rev. A. 89, 052115 (2014)].
format Online
Article
Text
id pubmed-5075915
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-50759152016-10-28 Optimal Universal Uncertainty Relations Li, Tao Xiao, Yunlong Ma, Teng Fei, Shao-Ming Jing, Naihuan Li-Jost, Xianqing Wang, Zhi-Xi Sci Rep Article We study universal uncertainty relations and present a method called joint probability distribution diagram to improve the majorization bounds constructed independently in [Phys. Rev. Lett. 111, 230401 (2013)] and [J. Phys. A. 46, 272002 (2013)]. The results give rise to state independent uncertainty relations satisfied by any nonnegative Schur-concave functions. On the other hand, a remarkable recent result of entropic uncertainty relation is the direct-sum majorization relation. In this paper, we illustrate our bounds by showing how they provide a complement to that in [Phys. Rev. A. 89, 052115 (2014)]. Nature Publishing Group 2016-10-24 /pmc/articles/PMC5075915/ /pubmed/27775010 http://dx.doi.org/10.1038/srep35735 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Li, Tao
Xiao, Yunlong
Ma, Teng
Fei, Shao-Ming
Jing, Naihuan
Li-Jost, Xianqing
Wang, Zhi-Xi
Optimal Universal Uncertainty Relations
title Optimal Universal Uncertainty Relations
title_full Optimal Universal Uncertainty Relations
title_fullStr Optimal Universal Uncertainty Relations
title_full_unstemmed Optimal Universal Uncertainty Relations
title_short Optimal Universal Uncertainty Relations
title_sort optimal universal uncertainty relations
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5075915/
https://www.ncbi.nlm.nih.gov/pubmed/27775010
http://dx.doi.org/10.1038/srep35735
work_keys_str_mv AT litao optimaluniversaluncertaintyrelations
AT xiaoyunlong optimaluniversaluncertaintyrelations
AT mateng optimaluniversaluncertaintyrelations
AT feishaoming optimaluniversaluncertaintyrelations
AT jingnaihuan optimaluniversaluncertaintyrelations
AT lijostxianqing optimaluniversaluncertaintyrelations
AT wangzhixi optimaluniversaluncertaintyrelations