Cargando…
Optimal Universal Uncertainty Relations
We study universal uncertainty relations and present a method called joint probability distribution diagram to improve the majorization bounds constructed independently in [Phys. Rev. Lett. 111, 230401 (2013)] and [J. Phys. A. 46, 272002 (2013)]. The results give rise to state independent uncertaint...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5075915/ https://www.ncbi.nlm.nih.gov/pubmed/27775010 http://dx.doi.org/10.1038/srep35735 |
_version_ | 1782461947445248000 |
---|---|
author | Li, Tao Xiao, Yunlong Ma, Teng Fei, Shao-Ming Jing, Naihuan Li-Jost, Xianqing Wang, Zhi-Xi |
author_facet | Li, Tao Xiao, Yunlong Ma, Teng Fei, Shao-Ming Jing, Naihuan Li-Jost, Xianqing Wang, Zhi-Xi |
author_sort | Li, Tao |
collection | PubMed |
description | We study universal uncertainty relations and present a method called joint probability distribution diagram to improve the majorization bounds constructed independently in [Phys. Rev. Lett. 111, 230401 (2013)] and [J. Phys. A. 46, 272002 (2013)]. The results give rise to state independent uncertainty relations satisfied by any nonnegative Schur-concave functions. On the other hand, a remarkable recent result of entropic uncertainty relation is the direct-sum majorization relation. In this paper, we illustrate our bounds by showing how they provide a complement to that in [Phys. Rev. A. 89, 052115 (2014)]. |
format | Online Article Text |
id | pubmed-5075915 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-50759152016-10-28 Optimal Universal Uncertainty Relations Li, Tao Xiao, Yunlong Ma, Teng Fei, Shao-Ming Jing, Naihuan Li-Jost, Xianqing Wang, Zhi-Xi Sci Rep Article We study universal uncertainty relations and present a method called joint probability distribution diagram to improve the majorization bounds constructed independently in [Phys. Rev. Lett. 111, 230401 (2013)] and [J. Phys. A. 46, 272002 (2013)]. The results give rise to state independent uncertainty relations satisfied by any nonnegative Schur-concave functions. On the other hand, a remarkable recent result of entropic uncertainty relation is the direct-sum majorization relation. In this paper, we illustrate our bounds by showing how they provide a complement to that in [Phys. Rev. A. 89, 052115 (2014)]. Nature Publishing Group 2016-10-24 /pmc/articles/PMC5075915/ /pubmed/27775010 http://dx.doi.org/10.1038/srep35735 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Li, Tao Xiao, Yunlong Ma, Teng Fei, Shao-Ming Jing, Naihuan Li-Jost, Xianqing Wang, Zhi-Xi Optimal Universal Uncertainty Relations |
title | Optimal Universal Uncertainty Relations |
title_full | Optimal Universal Uncertainty Relations |
title_fullStr | Optimal Universal Uncertainty Relations |
title_full_unstemmed | Optimal Universal Uncertainty Relations |
title_short | Optimal Universal Uncertainty Relations |
title_sort | optimal universal uncertainty relations |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5075915/ https://www.ncbi.nlm.nih.gov/pubmed/27775010 http://dx.doi.org/10.1038/srep35735 |
work_keys_str_mv | AT litao optimaluniversaluncertaintyrelations AT xiaoyunlong optimaluniversaluncertaintyrelations AT mateng optimaluniversaluncertaintyrelations AT feishaoming optimaluniversaluncertaintyrelations AT jingnaihuan optimaluniversaluncertaintyrelations AT lijostxianqing optimaluniversaluncertaintyrelations AT wangzhixi optimaluniversaluncertaintyrelations |