Cargando…
Deep-submicron Graphene Field-Effect Transistors with State-of-Art f(max)
In order to conquer the short-channel effects that limit conventional ultra-scale semiconductor devices, two-dimensional materials, as an option of ultimate thin channels, receive wide attention. Graphene, in particular, bears great expectations because of its supreme carrier mobility and saturation...
Autores principales: | Lyu, Hongming, Lu, Qi, Liu, Jinbiao, Wu, Xiaoming, Zhang, Jinyu, Li, Junfeng, Niu, Jiebin, Yu, Zhiping, Wu, Huaqiang, Qian, He |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5075922/ https://www.ncbi.nlm.nih.gov/pubmed/27775009 http://dx.doi.org/10.1038/srep35717 |
Ejemplares similares
-
Graphene Distributed Amplifiers: Generating Desirable Gain for Graphene Field-Effect Transistors
por: Lyu, Hongming, et al.
Publicado: (2015) -
Does carrier velocity saturation help to enhance f(max) in graphene field-effect transistors?
por: Feijoo, Pedro C., et al.
Publicado: (2020) -
Magnetic Graphene Field-Effect Transistor Biosensor for Single-Strand DNA Detection
por: Sun, Jinjin, et al.
Publicado: (2019) -
Radiation-induced edge effects in deep submicron CMOS transistors
por: Faccio, F, et al.
Publicado: (2005) -
Deep Submicron EGFET Based on Transistor Association Technique for Chemical Sensing
por: Pullano, Salvatore A., et al.
Publicado: (2019)