Cargando…
Elastic and anelastic relaxation behaviour of perovskite multiferroics II: PbZr(0.53)Ti(0.47)O(3) (PZT)–PbFe(0.5)Ta(0.5)O(3) (PFT)
Elastic and anelastic properties of ceramic samples of multiferroic perovskites with nominal compositions across the binary join PbZr(0.53)Ti(0.47)O(3)–PbFe(0.5)Ta(0.5)O(3) (PZT–PFT) have been assembled to create a binary phase diagram and to address the role of strain relaxation associated with the...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5076019/ https://www.ncbi.nlm.nih.gov/pubmed/27829689 http://dx.doi.org/10.1007/s10853-016-0330-9 |
_version_ | 1782461960148746240 |
---|---|
author | Schiemer, J. A. Lascu, I. Harrison, R. J. Kumar, A. Katiyar, R. S. Sanchez, D. A. Ortega, N. Mejia, C. Salazar Schnelle, W. Shinohara, H. Heap, A. J. F. Nagaratnam, R. Dutton, S. E. Scott, J. F. Nair, B. Mathur, N. D. Carpenter, M. A. |
author_facet | Schiemer, J. A. Lascu, I. Harrison, R. J. Kumar, A. Katiyar, R. S. Sanchez, D. A. Ortega, N. Mejia, C. Salazar Schnelle, W. Shinohara, H. Heap, A. J. F. Nagaratnam, R. Dutton, S. E. Scott, J. F. Nair, B. Mathur, N. D. Carpenter, M. A. |
author_sort | Schiemer, J. A. |
collection | PubMed |
description | Elastic and anelastic properties of ceramic samples of multiferroic perovskites with nominal compositions across the binary join PbZr(0.53)Ti(0.47)O(3)–PbFe(0.5)Ta(0.5)O(3) (PZT–PFT) have been assembled to create a binary phase diagram and to address the role of strain relaxation associated with their phase transitions. Structural relationships are similar to those observed previously for PbZr(0.53)Ti(0.47)O(3)–PbFe(0.5)Nb(0.5)O(3) (PZT–PFN), but the magnitude of the tetragonal shear strain associated with the ferroelectric order parameter appears to be much smaller. This leads to relaxor character for the development of ferroelectric properties in the end member PbFe(0.5)Ta(0.5)O(3). As for PZT–PFN, there appear to be two discrete instabilities rather than simply a reorientation of the electric dipole in the transition sequence cubic–tetragonal–monoclinic, and the second transition has characteristics typical of an improper ferroelastic. At intermediate compositions, the ferroelastic microstructure has strain heterogeneities on a mesoscopic length scale and, probably, also on a microscopic scale. This results in a wide anelastic freezing interval for strain-related defects rather than the freezing of discrete twin walls that would occur in a conventional ferroelastic material. In PFT, however, the acoustic loss behaviour more nearly resembles that due to freezing of conventional ferroelastic twin walls. Precursor softening of the shear modulus in both PFT and PFN does not fit with a Vogel–Fulcher description, but in PFT there is a temperature interval where the softening conforms to a power law suggestive of the role of fluctuations of the order parameter with dispersion along one branch of the Brillouin zone. Magnetic ordering appears to be coupled only weakly with a volume strain and not with shear strain but, as with multiferroic PZT–PFN perovskites, takes place within crystals which have significant strain heterogeneities on different length scales. |
format | Online Article Text |
id | pubmed-5076019 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-50760192016-11-07 Elastic and anelastic relaxation behaviour of perovskite multiferroics II: PbZr(0.53)Ti(0.47)O(3) (PZT)–PbFe(0.5)Ta(0.5)O(3) (PFT) Schiemer, J. A. Lascu, I. Harrison, R. J. Kumar, A. Katiyar, R. S. Sanchez, D. A. Ortega, N. Mejia, C. Salazar Schnelle, W. Shinohara, H. Heap, A. J. F. Nagaratnam, R. Dutton, S. E. Scott, J. F. Nair, B. Mathur, N. D. Carpenter, M. A. J Mater Sci Original Paper Elastic and anelastic properties of ceramic samples of multiferroic perovskites with nominal compositions across the binary join PbZr(0.53)Ti(0.47)O(3)–PbFe(0.5)Ta(0.5)O(3) (PZT–PFT) have been assembled to create a binary phase diagram and to address the role of strain relaxation associated with their phase transitions. Structural relationships are similar to those observed previously for PbZr(0.53)Ti(0.47)O(3)–PbFe(0.5)Nb(0.5)O(3) (PZT–PFN), but the magnitude of the tetragonal shear strain associated with the ferroelectric order parameter appears to be much smaller. This leads to relaxor character for the development of ferroelectric properties in the end member PbFe(0.5)Ta(0.5)O(3). As for PZT–PFN, there appear to be two discrete instabilities rather than simply a reorientation of the electric dipole in the transition sequence cubic–tetragonal–monoclinic, and the second transition has characteristics typical of an improper ferroelastic. At intermediate compositions, the ferroelastic microstructure has strain heterogeneities on a mesoscopic length scale and, probably, also on a microscopic scale. This results in a wide anelastic freezing interval for strain-related defects rather than the freezing of discrete twin walls that would occur in a conventional ferroelastic material. In PFT, however, the acoustic loss behaviour more nearly resembles that due to freezing of conventional ferroelastic twin walls. Precursor softening of the shear modulus in both PFT and PFN does not fit with a Vogel–Fulcher description, but in PFT there is a temperature interval where the softening conforms to a power law suggestive of the role of fluctuations of the order parameter with dispersion along one branch of the Brillouin zone. Magnetic ordering appears to be coupled only weakly with a volume strain and not with shear strain but, as with multiferroic PZT–PFN perovskites, takes place within crystals which have significant strain heterogeneities on different length scales. Springer US 2016-09-09 2017 /pmc/articles/PMC5076019/ /pubmed/27829689 http://dx.doi.org/10.1007/s10853-016-0330-9 Text en © The Author(s) 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Original Paper Schiemer, J. A. Lascu, I. Harrison, R. J. Kumar, A. Katiyar, R. S. Sanchez, D. A. Ortega, N. Mejia, C. Salazar Schnelle, W. Shinohara, H. Heap, A. J. F. Nagaratnam, R. Dutton, S. E. Scott, J. F. Nair, B. Mathur, N. D. Carpenter, M. A. Elastic and anelastic relaxation behaviour of perovskite multiferroics II: PbZr(0.53)Ti(0.47)O(3) (PZT)–PbFe(0.5)Ta(0.5)O(3) (PFT) |
title | Elastic and anelastic relaxation behaviour of perovskite multiferroics II: PbZr(0.53)Ti(0.47)O(3) (PZT)–PbFe(0.5)Ta(0.5)O(3) (PFT) |
title_full | Elastic and anelastic relaxation behaviour of perovskite multiferroics II: PbZr(0.53)Ti(0.47)O(3) (PZT)–PbFe(0.5)Ta(0.5)O(3) (PFT) |
title_fullStr | Elastic and anelastic relaxation behaviour of perovskite multiferroics II: PbZr(0.53)Ti(0.47)O(3) (PZT)–PbFe(0.5)Ta(0.5)O(3) (PFT) |
title_full_unstemmed | Elastic and anelastic relaxation behaviour of perovskite multiferroics II: PbZr(0.53)Ti(0.47)O(3) (PZT)–PbFe(0.5)Ta(0.5)O(3) (PFT) |
title_short | Elastic and anelastic relaxation behaviour of perovskite multiferroics II: PbZr(0.53)Ti(0.47)O(3) (PZT)–PbFe(0.5)Ta(0.5)O(3) (PFT) |
title_sort | elastic and anelastic relaxation behaviour of perovskite multiferroics ii: pbzr(0.53)ti(0.47)o(3) (pzt)–pbfe(0.5)ta(0.5)o(3) (pft) |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5076019/ https://www.ncbi.nlm.nih.gov/pubmed/27829689 http://dx.doi.org/10.1007/s10853-016-0330-9 |
work_keys_str_mv | AT schiemerja elasticandanelasticrelaxationbehaviourofperovskitemultiferroicsiipbzr053ti047o3pztpbfe05ta05o3pft AT lascui elasticandanelasticrelaxationbehaviourofperovskitemultiferroicsiipbzr053ti047o3pztpbfe05ta05o3pft AT harrisonrj elasticandanelasticrelaxationbehaviourofperovskitemultiferroicsiipbzr053ti047o3pztpbfe05ta05o3pft AT kumara elasticandanelasticrelaxationbehaviourofperovskitemultiferroicsiipbzr053ti047o3pztpbfe05ta05o3pft AT katiyarrs elasticandanelasticrelaxationbehaviourofperovskitemultiferroicsiipbzr053ti047o3pztpbfe05ta05o3pft AT sanchezda elasticandanelasticrelaxationbehaviourofperovskitemultiferroicsiipbzr053ti047o3pztpbfe05ta05o3pft AT ortegan elasticandanelasticrelaxationbehaviourofperovskitemultiferroicsiipbzr053ti047o3pztpbfe05ta05o3pft AT mejiacsalazar elasticandanelasticrelaxationbehaviourofperovskitemultiferroicsiipbzr053ti047o3pztpbfe05ta05o3pft AT schnellew elasticandanelasticrelaxationbehaviourofperovskitemultiferroicsiipbzr053ti047o3pztpbfe05ta05o3pft AT shinoharah elasticandanelasticrelaxationbehaviourofperovskitemultiferroicsiipbzr053ti047o3pztpbfe05ta05o3pft AT heapajf elasticandanelasticrelaxationbehaviourofperovskitemultiferroicsiipbzr053ti047o3pztpbfe05ta05o3pft AT nagaratnamr elasticandanelasticrelaxationbehaviourofperovskitemultiferroicsiipbzr053ti047o3pztpbfe05ta05o3pft AT duttonse elasticandanelasticrelaxationbehaviourofperovskitemultiferroicsiipbzr053ti047o3pztpbfe05ta05o3pft AT scottjf elasticandanelasticrelaxationbehaviourofperovskitemultiferroicsiipbzr053ti047o3pztpbfe05ta05o3pft AT nairb elasticandanelasticrelaxationbehaviourofperovskitemultiferroicsiipbzr053ti047o3pztpbfe05ta05o3pft AT mathurnd elasticandanelasticrelaxationbehaviourofperovskitemultiferroicsiipbzr053ti047o3pztpbfe05ta05o3pft AT carpenterma elasticandanelasticrelaxationbehaviourofperovskitemultiferroicsiipbzr053ti047o3pztpbfe05ta05o3pft |