Cargando…
Classification of Benign and Malignant Thyroid Nodules Using a Combined Clinical Information and Gene Expression Signatures
BACKGROUND: A key challenge in thyroid carcinoma is preoperatively diagnosing malignant thyroid nodules. A novel diagnostic test that measures the expression of a 3-gene signature (DPP4, SCG5 and CA12) has demonstrated promise in thyroid carcinoma assessment. However, more reliable prediction method...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5077123/ https://www.ncbi.nlm.nih.gov/pubmed/27776138 http://dx.doi.org/10.1371/journal.pone.0164570 |
_version_ | 1782462137660080128 |
---|---|
author | Zheng, Bing Liu, Jun Gu, Jianlei Du, Jing Wang, Lin Gu, Shengli Cheng, Juan Yang, Jun Lu, Hui |
author_facet | Zheng, Bing Liu, Jun Gu, Jianlei Du, Jing Wang, Lin Gu, Shengli Cheng, Juan Yang, Jun Lu, Hui |
author_sort | Zheng, Bing |
collection | PubMed |
description | BACKGROUND: A key challenge in thyroid carcinoma is preoperatively diagnosing malignant thyroid nodules. A novel diagnostic test that measures the expression of a 3-gene signature (DPP4, SCG5 and CA12) has demonstrated promise in thyroid carcinoma assessment. However, more reliable prediction methods combining clinical features with genomic signatures with high accuracy, good stability and low cost are needed. METHODOLOGY/PRINCIPAL FINDINGS: 25 clinical information were recorded in 771 patients. Feature selection and validation were conducted using random forest. Thyroid samples and clinical data were obtained from 142 patients at two different hospitals, and expression of the 3-gene signature was measured using quantitative PCR. The predictive abilities of three models (based on the selected clinical variables, the gene expression profile, and integrated gene expression and clinical information) were compared. Seven clinical characteristics were selected based on a training set (539 patients) and tested in three test sets, yielding predictive accuracies of 82.3% (n = 232), 81.4% (n = 70), and 81.9% (n = 72). The predictive sensitivity, specificity, and accuracy were 72.3%, 80.5% and 76.8% for the model based on the gene expression signature, 66.2%, 81.8% and 74.6% for the model based on the clinical data, and 83.1%, 84.4% and 83.8% for the combined model in a 10-fold cross-validation (n = 142). CONCLUSIONS: These findings reveal that the integrated model, which combines clinical data with the 3-gene signature, is superior to models based on gene expression or clinical data alone. The integrated model appears to be a reliable tool for the preoperative diagnosis of thyroid tumors. |
format | Online Article Text |
id | pubmed-5077123 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-50771232016-11-04 Classification of Benign and Malignant Thyroid Nodules Using a Combined Clinical Information and Gene Expression Signatures Zheng, Bing Liu, Jun Gu, Jianlei Du, Jing Wang, Lin Gu, Shengli Cheng, Juan Yang, Jun Lu, Hui PLoS One Research Article BACKGROUND: A key challenge in thyroid carcinoma is preoperatively diagnosing malignant thyroid nodules. A novel diagnostic test that measures the expression of a 3-gene signature (DPP4, SCG5 and CA12) has demonstrated promise in thyroid carcinoma assessment. However, more reliable prediction methods combining clinical features with genomic signatures with high accuracy, good stability and low cost are needed. METHODOLOGY/PRINCIPAL FINDINGS: 25 clinical information were recorded in 771 patients. Feature selection and validation were conducted using random forest. Thyroid samples and clinical data were obtained from 142 patients at two different hospitals, and expression of the 3-gene signature was measured using quantitative PCR. The predictive abilities of three models (based on the selected clinical variables, the gene expression profile, and integrated gene expression and clinical information) were compared. Seven clinical characteristics were selected based on a training set (539 patients) and tested in three test sets, yielding predictive accuracies of 82.3% (n = 232), 81.4% (n = 70), and 81.9% (n = 72). The predictive sensitivity, specificity, and accuracy were 72.3%, 80.5% and 76.8% for the model based on the gene expression signature, 66.2%, 81.8% and 74.6% for the model based on the clinical data, and 83.1%, 84.4% and 83.8% for the combined model in a 10-fold cross-validation (n = 142). CONCLUSIONS: These findings reveal that the integrated model, which combines clinical data with the 3-gene signature, is superior to models based on gene expression or clinical data alone. The integrated model appears to be a reliable tool for the preoperative diagnosis of thyroid tumors. Public Library of Science 2016-10-24 /pmc/articles/PMC5077123/ /pubmed/27776138 http://dx.doi.org/10.1371/journal.pone.0164570 Text en © 2016 Zheng et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Zheng, Bing Liu, Jun Gu, Jianlei Du, Jing Wang, Lin Gu, Shengli Cheng, Juan Yang, Jun Lu, Hui Classification of Benign and Malignant Thyroid Nodules Using a Combined Clinical Information and Gene Expression Signatures |
title | Classification of Benign and Malignant Thyroid Nodules Using a Combined Clinical Information and Gene Expression Signatures |
title_full | Classification of Benign and Malignant Thyroid Nodules Using a Combined Clinical Information and Gene Expression Signatures |
title_fullStr | Classification of Benign and Malignant Thyroid Nodules Using a Combined Clinical Information and Gene Expression Signatures |
title_full_unstemmed | Classification of Benign and Malignant Thyroid Nodules Using a Combined Clinical Information and Gene Expression Signatures |
title_short | Classification of Benign and Malignant Thyroid Nodules Using a Combined Clinical Information and Gene Expression Signatures |
title_sort | classification of benign and malignant thyroid nodules using a combined clinical information and gene expression signatures |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5077123/ https://www.ncbi.nlm.nih.gov/pubmed/27776138 http://dx.doi.org/10.1371/journal.pone.0164570 |
work_keys_str_mv | AT zhengbing classificationofbenignandmalignantthyroidnodulesusingacombinedclinicalinformationandgeneexpressionsignatures AT liujun classificationofbenignandmalignantthyroidnodulesusingacombinedclinicalinformationandgeneexpressionsignatures AT gujianlei classificationofbenignandmalignantthyroidnodulesusingacombinedclinicalinformationandgeneexpressionsignatures AT dujing classificationofbenignandmalignantthyroidnodulesusingacombinedclinicalinformationandgeneexpressionsignatures AT wanglin classificationofbenignandmalignantthyroidnodulesusingacombinedclinicalinformationandgeneexpressionsignatures AT gushengli classificationofbenignandmalignantthyroidnodulesusingacombinedclinicalinformationandgeneexpressionsignatures AT chengjuan classificationofbenignandmalignantthyroidnodulesusingacombinedclinicalinformationandgeneexpressionsignatures AT yangjun classificationofbenignandmalignantthyroidnodulesusingacombinedclinicalinformationandgeneexpressionsignatures AT luhui classificationofbenignandmalignantthyroidnodulesusingacombinedclinicalinformationandgeneexpressionsignatures |