Cargando…
Spirochete flagella hook protein self-catalyze a lysinoalanine covalent cross-link for motility
Spirochetes are bacteria responsible for several serious diseases that include Lyme disease (Borrelia burgdorferi), syphilis (Treponema pallidum), leptospirosis (Leptospira interrogans), and contribute to periodontal diseases (Treponema denticola)(1). These spirochetes employ an unusual form of flag...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5077173/ https://www.ncbi.nlm.nih.gov/pubmed/27670115 http://dx.doi.org/10.1038/nmicrobiol.2016.134 |
Sumario: | Spirochetes are bacteria responsible for several serious diseases that include Lyme disease (Borrelia burgdorferi), syphilis (Treponema pallidum), leptospirosis (Leptospira interrogans), and contribute to periodontal diseases (Treponema denticola)(1). These spirochetes employ an unusual form of flagella-based motility necessary for pathogenicity; indeed, spirochete flagella (periplasmic flagella, PFs) reside and rotate within the periplasmic space(2–11). The universal joint or hook that links the rotary motor to the filament is composed of approximately 120–130 FlgE proteins, which in spirochetes form an unusually stable, high-molecular weight complex (HMWC)(9,12–17). In other bacteria, the hook can be readily dissociated by treatments such as heat(18). In contrast, spirochete hooks are resistant to these treatments, and several lines of evidence indicate that the HMWC is the consequence of covalent cross-linking(12,13,17). Here we show that T. denticola FlgE self-catalyzes an interpeptide cross-linking reaction between conserved lysine and cysteine resulting in the formation of an unusual lysinoalanine adduct that polymerizes the hook subunits. Lysinoalanine cross-links are not needed for flagellar assembly, but they are required for cell motility, and hence infection. The self-catalytic nature of FlgE cross-linking has important implications for protein engineering, and its sensitivity to chemical inhibitors provides a new avenue for the development of antimicrobials targeting spirochetes. |
---|