Cargando…
Predicting cancer-relevant proteins using an improved molecular similarity ensemble approach
In this study, we proposed an improved algorithm for identifying proteins relevant to cancer. The algorithm was named two-layer molecular similarity ensemble approach (TL-SEA). We applied TL-SEA to analyzing the correlation between anticancer compounds (against cell lines K562, MCF7 and A549) and ac...
Autores principales: | Zhou, Bin, Sun, Qi, Kong, De-Xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5078021/ https://www.ncbi.nlm.nih.gov/pubmed/27083051 http://dx.doi.org/10.18632/oncotarget.8716 |
Ejemplares similares
-
Improving chemical similarity ensemble approach in target prediction
por: Wang, Zhonghua, et al.
Publicado: (2016) -
Similarity Measures for Protein Ensembles
por: Lindorff-Larsen, Kresten, et al.
Publicado: (2009) -
Machine learning/molecular dynamic protein structure prediction approach to investigate the protein conformational ensemble
por: Audagnotto, Martina, et al.
Publicado: (2022) -
Improving dynamic predictions with ensembles of observable models
por: Massonis, Gemma, et al.
Publicado: (2022) -
An Ensemble Learning Approach to Improving Prediction of Case Duration for Spine Surgery: Algorithm Development and Validation
por: Gabriel, Rodney Allanigue, et al.
Publicado: (2023)