Cargando…
Analog Memristive Synapse in Spiking Networks Implementing Unsupervised Learning
Emerging brain-inspired architectures call for devices that can emulate the functionality of biological synapses in order to implement new efficient computational schemes able to solve ill-posed problems. Various devices and solutions are still under investigation and, in this respect, a challenge i...
Autores principales: | Covi, Erika, Brivio, Stefano, Serb, Alexander, Prodromakis, Themis, Fanciulli, Marco, Spiga, Sabina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5078263/ https://www.ncbi.nlm.nih.gov/pubmed/27826226 http://dx.doi.org/10.3389/fnins.2016.00482 |
Ejemplares similares
-
Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses
por: Serb, Alexander, et al.
Publicado: (2016) -
Palimpsest memories stored in memristive synapses
por: Giotis, Christos, et al.
Publicado: (2022) -
Non-linear Memristive Synaptic Dynamics for Efficient Unsupervised Learning in Spiking Neural Networks
por: Brivio, Stefano, et al.
Publicado: (2021) -
Memristive synapses connect brain and silicon spiking neurons
por: Serb, Alexantrou, et al.
Publicado: (2020) -
Author Correction: Memristive synapses connect brain and silicon spiking neurons
por: Serb, Alexantrou, et al.
Publicado: (2020)