Cargando…

Wood Cellular Dendroclimatology: Testing New Proxies in Great Basin Bristlecone Pine

Dendroclimatic proxies can be generated from the analysis of wood cellular structures, allowing for a more complete understanding of the physiological mechanisms that control the climatic response of tree species. Century-long (1870–2013) time series of anatomical parameters were developed for Great...

Descripción completa

Detalles Bibliográficos
Autores principales: Ziaco, Emanuele, Biondi, Franco, Heinrich, Ingo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5078726/
https://www.ncbi.nlm.nih.gov/pubmed/27826315
http://dx.doi.org/10.3389/fpls.2016.01602
_version_ 1782462436355342336
author Ziaco, Emanuele
Biondi, Franco
Heinrich, Ingo
author_facet Ziaco, Emanuele
Biondi, Franco
Heinrich, Ingo
author_sort Ziaco, Emanuele
collection PubMed
description Dendroclimatic proxies can be generated from the analysis of wood cellular structures, allowing for a more complete understanding of the physiological mechanisms that control the climatic response of tree species. Century-long (1870–2013) time series of anatomical parameters were developed for Great Basin bristlecone pine (Pinus longaeva D.K. Bailey) by capturing strongly contrasted microscopic images through a Confocal Laser Scanning Microscope. Environmental information embedded in wood anatomical series was analyzed in comparison with ring-width series using measures of empirical signal strength. Response functions were calculated against monthly climatic variables to evaluate climate sensitivity of cellular features (e.g., lumen area; lumen diameter) for the period 1950–2013. Calibration-verification tests were used to determine the potential to generate long climate reconstructions from these anatomical proxies. A total of eight tree-ring parameters (two ring-width and six chronologies of xylem anatomical parameters) were analyzed. Synchronous variability among samples varied among tree-ring parameters, usually decreasing from ring-width to anatomical features. Cellular parameters linked to plant hydraulic performance (e.g., tracheid lumen area and radial lumen diameter) showed empirical signal strength similar to ring-width series, while noise was predominant in chronologies of lumen tangential width and cell wall thickness. Climatic signals were different between anatomical and ring-width chronologies, revealing a positive and temporally stable correlation of tracheid size (i.e., lumen and cell diameter) with monthly (i.e., March) and seasonal precipitation. In particular, tracheid lumen diameter emerged as a reliable moisture indicator and was then used to reconstruct total March–August precipitation from 1870 to 2013. Wood anatomy holds great potential to refine and expand dendroclimatic records by allowing estimates of plant physiological adaptations to external stressors. Integrating xylem cellular features with ring-width chronologies can widen our understanding of past climatic variability (including annual extreme events) and improve the evaluation of long-term plant response to drought, especially in connection with future warming scenarios.
format Online
Article
Text
id pubmed-5078726
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-50787262016-11-08 Wood Cellular Dendroclimatology: Testing New Proxies in Great Basin Bristlecone Pine Ziaco, Emanuele Biondi, Franco Heinrich, Ingo Front Plant Sci Plant Science Dendroclimatic proxies can be generated from the analysis of wood cellular structures, allowing for a more complete understanding of the physiological mechanisms that control the climatic response of tree species. Century-long (1870–2013) time series of anatomical parameters were developed for Great Basin bristlecone pine (Pinus longaeva D.K. Bailey) by capturing strongly contrasted microscopic images through a Confocal Laser Scanning Microscope. Environmental information embedded in wood anatomical series was analyzed in comparison with ring-width series using measures of empirical signal strength. Response functions were calculated against monthly climatic variables to evaluate climate sensitivity of cellular features (e.g., lumen area; lumen diameter) for the period 1950–2013. Calibration-verification tests were used to determine the potential to generate long climate reconstructions from these anatomical proxies. A total of eight tree-ring parameters (two ring-width and six chronologies of xylem anatomical parameters) were analyzed. Synchronous variability among samples varied among tree-ring parameters, usually decreasing from ring-width to anatomical features. Cellular parameters linked to plant hydraulic performance (e.g., tracheid lumen area and radial lumen diameter) showed empirical signal strength similar to ring-width series, while noise was predominant in chronologies of lumen tangential width and cell wall thickness. Climatic signals were different between anatomical and ring-width chronologies, revealing a positive and temporally stable correlation of tracheid size (i.e., lumen and cell diameter) with monthly (i.e., March) and seasonal precipitation. In particular, tracheid lumen diameter emerged as a reliable moisture indicator and was then used to reconstruct total March–August precipitation from 1870 to 2013. Wood anatomy holds great potential to refine and expand dendroclimatic records by allowing estimates of plant physiological adaptations to external stressors. Integrating xylem cellular features with ring-width chronologies can widen our understanding of past climatic variability (including annual extreme events) and improve the evaluation of long-term plant response to drought, especially in connection with future warming scenarios. Frontiers Media S.A. 2016-10-25 /pmc/articles/PMC5078726/ /pubmed/27826315 http://dx.doi.org/10.3389/fpls.2016.01602 Text en Copyright © 2016 Ziaco, Biondi and Heinrich. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Plant Science
Ziaco, Emanuele
Biondi, Franco
Heinrich, Ingo
Wood Cellular Dendroclimatology: Testing New Proxies in Great Basin Bristlecone Pine
title Wood Cellular Dendroclimatology: Testing New Proxies in Great Basin Bristlecone Pine
title_full Wood Cellular Dendroclimatology: Testing New Proxies in Great Basin Bristlecone Pine
title_fullStr Wood Cellular Dendroclimatology: Testing New Proxies in Great Basin Bristlecone Pine
title_full_unstemmed Wood Cellular Dendroclimatology: Testing New Proxies in Great Basin Bristlecone Pine
title_short Wood Cellular Dendroclimatology: Testing New Proxies in Great Basin Bristlecone Pine
title_sort wood cellular dendroclimatology: testing new proxies in great basin bristlecone pine
topic Plant Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5078726/
https://www.ncbi.nlm.nih.gov/pubmed/27826315
http://dx.doi.org/10.3389/fpls.2016.01602
work_keys_str_mv AT ziacoemanuele woodcellulardendroclimatologytestingnewproxiesingreatbasinbristleconepine
AT biondifranco woodcellulardendroclimatologytestingnewproxiesingreatbasinbristleconepine
AT heinrichingo woodcellulardendroclimatologytestingnewproxiesingreatbasinbristleconepine