Cargando…
Network Consistency Projection for Human miRNA-Disease Associations Inference
Prediction and confirmation of the presence of disease-related miRNAs is beneficial to understand disease mechanisms at the miRNA level. However, the use of experimental verification to identify disease-related miRNAs is expensive and time-consuming. Effective computational approaches used to predic...
Autores principales: | Gu, Changlong, Liao, Bo, Li, Xiaoying, Li, Keqin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5078764/ https://www.ncbi.nlm.nih.gov/pubmed/27779232 http://dx.doi.org/10.1038/srep36054 |
Ejemplares similares
-
Global network random walk for predicting potential human lncRNA-disease associations
por: Gu, Changlong, et al.
Publicado: (2017) -
Uncover miRNA-Disease Association by Exploiting Global Network Similarity
por: Chen, Min, et al.
Publicado: (2016) -
FCMDAP: using miRNA family and cluster information to improve the prediction accuracy of disease related miRNAs
por: Li, Xiaoying, et al.
Publicado: (2019) -
Prediction of disease-related miRNAs by voting with multiple classifiers
por: Gu, Changlong, et al.
Publicado: (2023) -
SRMDAP: SimRank and Density-Based Clustering Recommender Model for miRNA-Disease Association Prediction
por: Li, Xiaoying, et al.
Publicado: (2018)