Cargando…
Identifying combinatorial regulation of transcription factors and binding motifs
BACKGROUND: Combinatorial interaction of transcription factors (TFs) is important for gene regulation. Although various genomic datasets are relevant to this issue, each dataset provides relatively weak evidence on its own. Developing methods that can integrate different sequence, expression and loc...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC507881/ https://www.ncbi.nlm.nih.gov/pubmed/15287978 http://dx.doi.org/10.1186/gb-2004-5-8-r56 |
_version_ | 1782121688849186816 |
---|---|
author | Kato, Mamoru Hata, Naoya Banerjee, Nilanjana Futcher, Bruce Zhang, Michael Q |
author_facet | Kato, Mamoru Hata, Naoya Banerjee, Nilanjana Futcher, Bruce Zhang, Michael Q |
author_sort | Kato, Mamoru |
collection | PubMed |
description | BACKGROUND: Combinatorial interaction of transcription factors (TFs) is important for gene regulation. Although various genomic datasets are relevant to this issue, each dataset provides relatively weak evidence on its own. Developing methods that can integrate different sequence, expression and localization data have become important. RESULTS: Here we use a novel method that integrates chromatin immunoprecipitation (ChIP) data with microarray expression data and with combinatorial TF-motif analysis. We systematically identify combinations of transcription factors and of motifs. The various combinations of TFs involved multiple binding mechanisms. We reconstruct a new combinatorial regulatory map of the yeast cell cycle in which cell-cycle regulation can be drawn as a chain of extended TF modules. We find that the pairwise combination of a TF for an early cell-cycle phase and a TF for a later phase is often used to control gene expression at intermediate times. Thus the number of distinct times of gene expression is greater than the number of transcription factors. We also see that some TF modules control branch points (cell-cycle entry and exit), and in the presence of appropriate signals they can allow progress along alternative pathways. CONCLUSIONS: Combining different data sources can increase statistical power as demonstrated by detecting TF interactions and composite TF-binding motifs. The original picture of a chain of simple cell-cycle regulators can be extended to a chain of composite regulatory modules: different modules may share a common TF component in the same pathway or a TF component cross-talking to other pathways. |
format | Text |
id | pubmed-507881 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2004 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-5078812004-08-10 Identifying combinatorial regulation of transcription factors and binding motifs Kato, Mamoru Hata, Naoya Banerjee, Nilanjana Futcher, Bruce Zhang, Michael Q Genome Biol Research BACKGROUND: Combinatorial interaction of transcription factors (TFs) is important for gene regulation. Although various genomic datasets are relevant to this issue, each dataset provides relatively weak evidence on its own. Developing methods that can integrate different sequence, expression and localization data have become important. RESULTS: Here we use a novel method that integrates chromatin immunoprecipitation (ChIP) data with microarray expression data and with combinatorial TF-motif analysis. We systematically identify combinations of transcription factors and of motifs. The various combinations of TFs involved multiple binding mechanisms. We reconstruct a new combinatorial regulatory map of the yeast cell cycle in which cell-cycle regulation can be drawn as a chain of extended TF modules. We find that the pairwise combination of a TF for an early cell-cycle phase and a TF for a later phase is often used to control gene expression at intermediate times. Thus the number of distinct times of gene expression is greater than the number of transcription factors. We also see that some TF modules control branch points (cell-cycle entry and exit), and in the presence of appropriate signals they can allow progress along alternative pathways. CONCLUSIONS: Combining different data sources can increase statistical power as demonstrated by detecting TF interactions and composite TF-binding motifs. The original picture of a chain of simple cell-cycle regulators can be extended to a chain of composite regulatory modules: different modules may share a common TF component in the same pathway or a TF component cross-talking to other pathways. BioMed Central 2004 2004-07-28 /pmc/articles/PMC507881/ /pubmed/15287978 http://dx.doi.org/10.1186/gb-2004-5-8-r56 Text en Copyright © 2004 Kato et al.; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL. |
spellingShingle | Research Kato, Mamoru Hata, Naoya Banerjee, Nilanjana Futcher, Bruce Zhang, Michael Q Identifying combinatorial regulation of transcription factors and binding motifs |
title | Identifying combinatorial regulation of transcription factors and binding motifs |
title_full | Identifying combinatorial regulation of transcription factors and binding motifs |
title_fullStr | Identifying combinatorial regulation of transcription factors and binding motifs |
title_full_unstemmed | Identifying combinatorial regulation of transcription factors and binding motifs |
title_short | Identifying combinatorial regulation of transcription factors and binding motifs |
title_sort | identifying combinatorial regulation of transcription factors and binding motifs |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC507881/ https://www.ncbi.nlm.nih.gov/pubmed/15287978 http://dx.doi.org/10.1186/gb-2004-5-8-r56 |
work_keys_str_mv | AT katomamoru identifyingcombinatorialregulationoftranscriptionfactorsandbindingmotifs AT hatanaoya identifyingcombinatorialregulationoftranscriptionfactorsandbindingmotifs AT banerjeenilanjana identifyingcombinatorialregulationoftranscriptionfactorsandbindingmotifs AT futcherbruce identifyingcombinatorialregulationoftranscriptionfactorsandbindingmotifs AT zhangmichaelq identifyingcombinatorialregulationoftranscriptionfactorsandbindingmotifs |