Cargando…

Anatomical study of the coracoid process in Mongolian male cadavers using the Latarjet procedure

BACKGROUND: The Latarjet procedure addresses recurrent anterior shoulder instability in the context of a significant bony defect. However, the bony and soft tissue anatomy of the coracoid in coracoid transfer procedures has not yet been defined in Mongolian men. The aims of this study were to descri...

Descripción completa

Detalles Bibliográficos
Autores principales: Lian, Jianqiang, Dong, Lele, Zhao, Yanjun, Sun, Jinlei, Zhang, Wenlong, Gao, Chunzheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5078878/
https://www.ncbi.nlm.nih.gov/pubmed/27776520
http://dx.doi.org/10.1186/s13018-016-0461-3
Descripción
Sumario:BACKGROUND: The Latarjet procedure addresses recurrent anterior shoulder instability in the context of a significant bony defect. However, the bony and soft tissue anatomy of the coracoid in coracoid transfer procedures has not yet been defined in Mongolian men. The aims of this study were to describe the soft tissue attachments of the coracoid regarding the bony anatomy, define the average amount of bone available for coracoid transfer, analyze the characteristics of the pectoralis minor and coracoid, and study the relationship between the bony dimensions of the coracoid and body length in Mongolian men. METHODS: We dissected 30 shoulders from 15 male Mongolian cadavers, exposing the coracoid process and attached anatomical structures including the lateral clavicle and acromion, then measured the bony dimensions of the coracoid and the locations and sizes of the coracoid soft tissue footprints. RESULTS: The mean length of the coracoid available for transfer was 23.93 ± 2.32 mm. The mean length of the coracoid was 42.10 ± 2.3 mm, and the mean width and height of the coracoid midpoint were 15.29 ± 1.70 mm and 11.61 ± 1.98 mm, respectively. The pectoralis minor was part of the joint capsule and passed over the coracoid in some samples. The mutation rate of the pectoralis minor footprint, which was asymmetrical and irregular, was 23.33 %. Statistical analysis involved a multiple linear regression equation. CONCLUSIONS: The average amount of bone available for use in coracoid transfer in Mongolian men was less than that of other populations. Mutation of the pectoralis minor may induce intraoperative capsule injury because this muscle passes over the coracoid deep to the joint capsule of the glenohumeral joint and constitutes part of the shoulder joint, strengthening the joint. Statistically, higher coracoids appeared in shorter patients and longer coracoids appeared in taller patients. Surgically, great care should be taken to consider a patient’s height to precisely implement the congruent-arc Latarjet technique.