Cargando…
Comparison of unsupervised classification methods for brain tumor segmentation using multi-parametric MRI
Tumor segmentation is a particularly challenging task in high-grade gliomas (HGGs), as they are among the most heterogeneous tumors in oncology. An accurate delineation of the lesion and its main subcomponents contributes to optimal treatment planning, prognosis and follow-up. Conventional MRI (cMRI...
Autores principales: | Sauwen, N., Acou, M., Van Cauter, S., Sima, D.M., Veraart, J., Maes, F., Himmelreich, U., Achten, E., Van Huffel, S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5079350/ https://www.ncbi.nlm.nih.gov/pubmed/27812502 http://dx.doi.org/10.1016/j.nicl.2016.09.021 |
Ejemplares similares
-
Semi-automated brain tumor segmentation on multi-parametric MRI using regularized non-negative matrix factorization
por: Sauwen, Nicolas, et al.
Publicado: (2017) -
The successive projection algorithm as an initialization method for brain tumor segmentation using non-negative matrix factorization
por: Sauwen, Nicolas, et al.
Publicado: (2017) -
Classifying Glioblastoma Multiforme Follow-Up Progressive vs. Responsive Forms Using Multi-Parametric MRI Features
por: Ion-Mărgineanu, Adrian, et al.
Publicado: (2017) -
Non-invasive assessment of disease progression and neuroprotective effects of dietary coconut oil supplementation in the ALS SOD1(G93A) mouse model: A (1)H-magnetic resonance spectroscopic study
por: Weerasekera, A., et al.
Publicado: (2018) -
icobrain ms 5.1: Combining unsupervised and supervised approaches for improving the detection of multiple sclerosis lesions
por: Rakić, Mladen, et al.
Publicado: (2021)