Cargando…

Carbon quantum dots shuttle electrons to the anode of a microbial fuel cell

Electrodes based on graphite, graphene, and carbon nanomaterials have been used in the anode chamber of microbial fuel cells (MFCs). Carbon quantum dots (C-dots) are a class of versatile nanomaterials hitherto not reported in MFCs. C-dots previously synthesized from coconut husk were reported to pos...

Descripción completa

Detalles Bibliográficos
Autores principales: Vishwanathan, A. S., Aiyer, Kartik S., Chunduri, L. A. A., Venkataramaniah, K., Siva Sankara Sai, S., Rao, Govind
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5080269/
https://www.ncbi.nlm.nih.gov/pubmed/28330300
http://dx.doi.org/10.1007/s13205-016-0552-1
Descripción
Sumario:Electrodes based on graphite, graphene, and carbon nanomaterials have been used in the anode chamber of microbial fuel cells (MFCs). Carbon quantum dots (C-dots) are a class of versatile nanomaterials hitherto not reported in MFCs. C-dots previously synthesized from coconut husk were reported to possess hydroxyl and carboxyl functional groups on their surface. The presence of these functional groups on a carbon matrix conferred on the C-dots the ability to conduct and transfer electrons. Formation of silver nanoparticles from silver nitrate upon addition of C-dots confirmed their reducing ability. DREAM assay using a mixed microbial culture containing C-dots showed a 172% increase in electron transfer activity and thus confirmed the involvement of C-dots in supplementing redox activity of a microbial culture. Addition of C-dots as a suspension in the anode chamber of an MFC resulted in a 22.5% enhancement in maximum power density. C-dots showed better performance as electron shuttles than methylene blue, a conventional electron shuttle used in MFCs.