Cargando…
Measuring Accelerated Rates of Insertions and Deletions Independent of Rates of Nucleotide Substitution
Evolutionary constraint for insertions and deletions (indels) is not necessarily equal to constraint for nucleotide substitutions for any given region of a genome. Knowing the variation in indel-specific evolutionary rates across the sequence will aid our understanding of evolutionary constraints on...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5080320/ https://www.ncbi.nlm.nih.gov/pubmed/27770175 http://dx.doi.org/10.1007/s00239-016-9761-9 |
Sumario: | Evolutionary constraint for insertions and deletions (indels) is not necessarily equal to constraint for nucleotide substitutions for any given region of a genome. Knowing the variation in indel-specific evolutionary rates across the sequence will aid our understanding of evolutionary constraints on indels, and help us infer how indels have contributed to the evolution of the sequence. However, unlike for nucleotide substitutions, there has been no phylogenetic method that can statistically infer significantly different rates of indels across the sequence space independent of substitution rates. Here, we have developed a software that will find sites with accelerated evolutionary rates specific to indels, by introducing a scaling parameter that only applies to the indel rates and not to the nucleotide substitution rates. Using the software, we show that we can find regions of accelerated rates of indels in the protein alignments of primate genomes. We also confirm that the sites that have high rates of indels are different from the sites that have high rates of nucleotide substitutions within the protein sequences. By identifying regions with accelerated rates of indels independent of nucleotide substitutions, we will be able to better understand the impact of indel mutations on protein sequence evolution. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00239-016-9761-9) contains supplementary material, which is available to authorized users. |
---|