Cargando…
Collective Influence of Multiple Spreaders Evaluated by Tracing Real Information Flow in Large-Scale Social Networks
Identifying the most influential spreaders that maximize information flow is a central question in network theory. Recently, a scalable method called “Collective Influence (CI)” has been put forward through collective influence maximization. In contrast to heuristic methods evaluating nodes’ signifi...
Autores principales: | Teng, Xian, Pei, Sen, Morone, Flaviano, Makse, Hernán A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5080555/ https://www.ncbi.nlm.nih.gov/pubmed/27782207 http://dx.doi.org/10.1038/srep36043 |
Ejemplares similares
-
Efficient collective influence maximization in cascading processes with first-order transitions
por: Pei, Sen, et al.
Publicado: (2017) -
Collective Influence Algorithm to find influencers via optimal percolation in massively large social media
por: Morone, Flaviano, et al.
Publicado: (2016) -
Symmetry group factorization reveals the structure-function relation in the neural connectome of Caenorhabditis elegans
por: Morone, Flaviano, et al.
Publicado: (2019) -
Inference and control of the nosocomial transmission of methicillin-resistant Staphylococcus aureus
por: Pei, Sen, et al.
Publicado: (2018) -
Finding Influential Spreaders from Human Activity beyond Network Location
por: Min, Byungjoon, et al.
Publicado: (2015)