Cargando…
Assessment of predictive performance in incomplete data by combining internal validation and multiple imputation
BACKGROUND: Missing values are a frequent issue in human studies. In many situations, multiple imputation (MI) is an appropriate missing data handling strategy, whereby missing values are imputed multiple times, the analysis is performed in every imputed data set, and the obtained estimates are pool...
Autores principales: | Wahl, Simone, Boulesteix, Anne-Laure, Zierer, Astrid, Thorand, Barbara, Avan de Wiel, Mark |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5080703/ https://www.ncbi.nlm.nih.gov/pubmed/27782817 http://dx.doi.org/10.1186/s12874-016-0239-7 |
Ejemplares similares
-
Erratum to: Assessment of predictive performance in incomplete data by combining internal validation and multiple imputation
por: Wahl, Simone, et al.
Publicado: (2016) -
Multiple imputation for an incomplete covariate that is a ratio
por: Morris, Tim P, et al.
Publicado: (2014) -
Multiple imputation and analysis for high‐dimensional incomplete proteomics data
por: Yin, Xiaoyan, et al.
Publicado: (2015) -
Multiple imputation for analysis of incomplete data in distributed health data networks
por: Chang, Changgee, et al.
Publicado: (2020) -
Combining data discretization and missing value imputation for incomplete medical datasets
por: Huang, Min-Wei, et al.
Publicado: (2023)