Cargando…
A statistical approach for identifying differential distributions in single-cell RNA-seq experiments
The ability to quantify cellular heterogeneity is a major advantage of single-cell technologies. However, statistical methods often treat cellular heterogeneity as a nuisance. We present a novel method to characterize differences in expression in the presence of distinct expression states within and...
Autores principales: | Korthauer, Keegan D., Chu, Li-Fang, Newton, Michael A., Li, Yuan, Thomson, James, Stewart, Ron, Kendziorski, Christina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5080738/ https://www.ncbi.nlm.nih.gov/pubmed/27782827 http://dx.doi.org/10.1186/s13059-016-1077-y |
Ejemplares similares
-
Enhancing biological signals and detection rates in single-cell RNA-seq experiments with cDNA library equalization
por: Bacher, Rhonda, et al.
Publicado: (2021) -
MADGiC: a model-based approach for identifying driver genes in cancer
por: Korthauer, Keegan D., et al.
Publicado: (2015) -
OEFinder: a user interface to identify and visualize ordering effects in single-cell RNA-seq data
por: Leng, Ning, et al.
Publicado: (2016) -
Oscope identifies oscillatory genes in unsynchronized single cell RNA-seq experiments
por: Leng, Ning, et al.
Publicado: (2015) -
SCnorm: robust normalization of single-cell RNA-seq data
por: Bacher, Rhonda, et al.
Publicado: (2017)