Cargando…
Particle swarm optimization using multi-information characteristics of all personal-best information
Convergence stagnation is the chief difficulty to solve hard optimization problems for most particle swarm optimization variants. To address this issue, a novel particle swarm optimization using multi-information characteristics of all personal-best information is developed in our research. In the m...
Autores principales: | Huang, Song, Tian, Na, Wang, Yan, Ji, Zhicheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5081087/ https://www.ncbi.nlm.nih.gov/pubmed/27833831 http://dx.doi.org/10.1186/s40064-016-3244-8 |
Ejemplares similares
-
Multi-objective flexible job-shop scheduling problem using modified discrete particle swarm optimization
por: Huang, Song, et al.
Publicado: (2016) -
Selectively-informed particle swarm optimization
por: Gao, Yang, et al.
Publicado: (2015) -
Multiswarm Particle Swarm Optimization with Transfer of the Best Particle
por: Wei, Xiao-peng, et al.
Publicado: (2015) -
Self-Regulated Particle Swarm Multi-Task Optimization
por: Zheng, Xiaolong, et al.
Publicado: (2021) -
Improved Particle Swarm Optimization Algorithm Based on Last-Eliminated Principle and Enhanced Information Sharing
por: Lv, Xueying, et al.
Publicado: (2018)