Cargando…

Comparative Genomics of Amphibian-like Ranaviruses, Nucleocytoplasmic Large DNA Viruses of Poikilotherms

Recent research on genome evolution of large DNA viruses has highlighted a number of incredibly dynamic processes that can facilitate rapid adaptation. The genomes of amphibian-like ranaviruses – double-stranded DNA viruses infecting amphibians, reptiles, and fish (family Iridoviridae) – were examin...

Descripción completa

Detalles Bibliográficos
Autor principal: Price, Stephen J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Libertas Academica 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5081246/
https://www.ncbi.nlm.nih.gov/pubmed/27812275
http://dx.doi.org/10.4137/EBO.S33490
Descripción
Sumario:Recent research on genome evolution of large DNA viruses has highlighted a number of incredibly dynamic processes that can facilitate rapid adaptation. The genomes of amphibian-like ranaviruses – double-stranded DNA viruses infecting amphibians, reptiles, and fish (family Iridoviridae) – were examined to assess variation in genome content and evolutionary processes. The viruses studied were closely related, but their genome content varied considerably, with 29 genes identified that were not present in all of the major clades. Twenty-one genes had evidence of recombination, while a virus isolated from a captive reptile appeared to be a mosaic of two divergent parents. Positive selection was also found to be acting on more than a quarter of Ranavirus genes and was found most frequently in the Spanish common midwife toad virus, which has had a severe impact on amphibian host communities. Efforts to resolve the root of this group by inclusion of an outgroup were inconclusive, but a set of core genes were identified, which recovered a well-supported species tree.