Cargando…
TCR Triggering Induces the Formation of Lck–RACK1–Actinin-1 Multiprotein Network Affecting Lck Redistribution
The initiation of T-cell signaling is critically dependent on the function of the member of Src family tyrosine kinases, Lck. Upon T-cell antigen receptor (TCR) triggering, Lck kinase activity induces the nucleation of signal-transducing hubs that regulate the formation of complex signaling network...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5081367/ https://www.ncbi.nlm.nih.gov/pubmed/27833610 http://dx.doi.org/10.3389/fimmu.2016.00449 |
_version_ | 1782462876360900608 |
---|---|
author | Ballek, Ondřej Valečka, Jan Dobešová, Martina Broučková, Adéla Manning, Jasper Řehulka, Pavel Stulík, Jiří Filipp, Dominik |
author_facet | Ballek, Ondřej Valečka, Jan Dobešová, Martina Broučková, Adéla Manning, Jasper Řehulka, Pavel Stulík, Jiří Filipp, Dominik |
author_sort | Ballek, Ondřej |
collection | PubMed |
description | The initiation of T-cell signaling is critically dependent on the function of the member of Src family tyrosine kinases, Lck. Upon T-cell antigen receptor (TCR) triggering, Lck kinase activity induces the nucleation of signal-transducing hubs that regulate the formation of complex signaling network and cytoskeletal rearrangement. In addition, the delivery of Lck function requires rapid and targeted membrane redistribution, but the mechanism underpinning this process is largely unknown. To gain insight into this process, we considered previously described proteins that could assist in this process via their capacity to interact with kinases and regulate their intracellular translocations. An adaptor protein, receptor for activated C kinase 1 (RACK1), was chosen as a viable option, and its capacity to bind Lck and aid the process of activation-induced redistribution of Lck was assessed. Our microscopic observation showed that T-cell activation induces a rapid, concomitant, and transient co-redistribution of Lck and RACK1 into the forming immunological synapse. Consistent with this observation, the formation of transient RACK1–Lck complexes were detectable in primary CD4(+) T-cells with their maximum levels peaking 10 s after TCR–CD4 co-aggregation. Moreover, RACK1 preferentially binds to a pool of kinase active pY394(Lck), which co-purifies with high molecular weight cellular fractions. The formation of RACK1–Lck complexes depends on functional SH2 and SH3 domains of Lck and includes several other signaling and cytoskeletal elements that transiently bind the complex. Notably, the F-actin-crosslinking protein, α-actinin-1, binds to RACK1 only in the presence of kinase active Lck suggesting that the formation of RACK1–pY394(Lck)–α-actinin-1 complex serves as a signal module coupling actin cytoskeleton bundling with productive TCR/CD4 triggering. In addition, the treatment of CD4(+) T-cells with nocodazole, which disrupts the microtubular network, also blocked the formation of RACK1–Lck complexes. Importantly, activation-induced Lck redistribution was diminished in primary CD4(+) T-cells by an adenoviral-mediated knockdown of RACK1. These results demonstrate that in T cells, RACK1, as an essential component of the multiprotein complex which upon TCR engagement, links the binding of kinase active Lck to elements of the cytoskeletal network and affects the subcellular redistribution of Lck. |
format | Online Article Text |
id | pubmed-5081367 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-50813672016-11-10 TCR Triggering Induces the Formation of Lck–RACK1–Actinin-1 Multiprotein Network Affecting Lck Redistribution Ballek, Ondřej Valečka, Jan Dobešová, Martina Broučková, Adéla Manning, Jasper Řehulka, Pavel Stulík, Jiří Filipp, Dominik Front Immunol Immunology The initiation of T-cell signaling is critically dependent on the function of the member of Src family tyrosine kinases, Lck. Upon T-cell antigen receptor (TCR) triggering, Lck kinase activity induces the nucleation of signal-transducing hubs that regulate the formation of complex signaling network and cytoskeletal rearrangement. In addition, the delivery of Lck function requires rapid and targeted membrane redistribution, but the mechanism underpinning this process is largely unknown. To gain insight into this process, we considered previously described proteins that could assist in this process via their capacity to interact with kinases and regulate their intracellular translocations. An adaptor protein, receptor for activated C kinase 1 (RACK1), was chosen as a viable option, and its capacity to bind Lck and aid the process of activation-induced redistribution of Lck was assessed. Our microscopic observation showed that T-cell activation induces a rapid, concomitant, and transient co-redistribution of Lck and RACK1 into the forming immunological synapse. Consistent with this observation, the formation of transient RACK1–Lck complexes were detectable in primary CD4(+) T-cells with their maximum levels peaking 10 s after TCR–CD4 co-aggregation. Moreover, RACK1 preferentially binds to a pool of kinase active pY394(Lck), which co-purifies with high molecular weight cellular fractions. The formation of RACK1–Lck complexes depends on functional SH2 and SH3 domains of Lck and includes several other signaling and cytoskeletal elements that transiently bind the complex. Notably, the F-actin-crosslinking protein, α-actinin-1, binds to RACK1 only in the presence of kinase active Lck suggesting that the formation of RACK1–pY394(Lck)–α-actinin-1 complex serves as a signal module coupling actin cytoskeleton bundling with productive TCR/CD4 triggering. In addition, the treatment of CD4(+) T-cells with nocodazole, which disrupts the microtubular network, also blocked the formation of RACK1–Lck complexes. Importantly, activation-induced Lck redistribution was diminished in primary CD4(+) T-cells by an adenoviral-mediated knockdown of RACK1. These results demonstrate that in T cells, RACK1, as an essential component of the multiprotein complex which upon TCR engagement, links the binding of kinase active Lck to elements of the cytoskeletal network and affects the subcellular redistribution of Lck. Frontiers Media S.A. 2016-10-27 /pmc/articles/PMC5081367/ /pubmed/27833610 http://dx.doi.org/10.3389/fimmu.2016.00449 Text en Copyright © 2016 Ballek, Valečka, Dobešová, Broučková, Manning, Řehulka, Stulík and Filipp. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Immunology Ballek, Ondřej Valečka, Jan Dobešová, Martina Broučková, Adéla Manning, Jasper Řehulka, Pavel Stulík, Jiří Filipp, Dominik TCR Triggering Induces the Formation of Lck–RACK1–Actinin-1 Multiprotein Network Affecting Lck Redistribution |
title | TCR Triggering Induces the Formation of Lck–RACK1–Actinin-1 Multiprotein Network Affecting Lck Redistribution |
title_full | TCR Triggering Induces the Formation of Lck–RACK1–Actinin-1 Multiprotein Network Affecting Lck Redistribution |
title_fullStr | TCR Triggering Induces the Formation of Lck–RACK1–Actinin-1 Multiprotein Network Affecting Lck Redistribution |
title_full_unstemmed | TCR Triggering Induces the Formation of Lck–RACK1–Actinin-1 Multiprotein Network Affecting Lck Redistribution |
title_short | TCR Triggering Induces the Formation of Lck–RACK1–Actinin-1 Multiprotein Network Affecting Lck Redistribution |
title_sort | tcr triggering induces the formation of lck–rack1–actinin-1 multiprotein network affecting lck redistribution |
topic | Immunology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5081367/ https://www.ncbi.nlm.nih.gov/pubmed/27833610 http://dx.doi.org/10.3389/fimmu.2016.00449 |
work_keys_str_mv | AT ballekondrej tcrtriggeringinducestheformationoflckrack1actinin1multiproteinnetworkaffectinglckredistribution AT valeckajan tcrtriggeringinducestheformationoflckrack1actinin1multiproteinnetworkaffectinglckredistribution AT dobesovamartina tcrtriggeringinducestheformationoflckrack1actinin1multiproteinnetworkaffectinglckredistribution AT brouckovaadela tcrtriggeringinducestheformationoflckrack1actinin1multiproteinnetworkaffectinglckredistribution AT manningjasper tcrtriggeringinducestheformationoflckrack1actinin1multiproteinnetworkaffectinglckredistribution AT rehulkapavel tcrtriggeringinducestheformationoflckrack1actinin1multiproteinnetworkaffectinglckredistribution AT stulikjiri tcrtriggeringinducestheformationoflckrack1actinin1multiproteinnetworkaffectinglckredistribution AT filippdominik tcrtriggeringinducestheformationoflckrack1actinin1multiproteinnetworkaffectinglckredistribution |