Cargando…
Random Survival Forests for Predicting the Bed Occupancy in the Intensive Care Unit
Predicting the bed occupancy of an intensive care unit (ICU) is a daunting task. The uncertainty associated with the prognosis of critically ill patients and the random arrival of new patients can lead to capacity problems and the need for reactive measures. In this paper, we work towards a predicti...
Autores principales: | Ruyssinck, Joeri, van der Herten, Joachim, Houthooft, Rein, Ongenae, Femke, Couckuyt, Ivo, Gadeyne, Bram, Colpaert, Kirsten, Decruyenaere, Johan, De Turck, Filip, Dhaene, Tom |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5081505/ https://www.ncbi.nlm.nih.gov/pubmed/27818706 http://dx.doi.org/10.1155/2016/7087053 |
Ejemplares similares
-
Towards computerizing intensive care sedation guidelines: design of a rule-based architecture for automated execution of clinical guidelines
por: Ongenae, Femke, et al.
Publicado: (2010) -
An ontology-based nurse call management system (oNCS) with probabilistic priority assessment
por: Ongenae, Femke, et al.
Publicado: (2011) -
Prediction of delayed graft function after kidney transplantation: comparison between logistic regression and machine learning methods
por: Decruyenaere, Alexander, et al.
Publicado: (2015) -
Netter: re-ranking gene network inference predictions using structural network properties
por: Ruyssinck, Joeri, et al.
Publicado: (2016) -
MINDWALC: mining interpretable, discriminative walks for classification of nodes in a knowledge graph
por: Vandewiele, Gilles, et al.
Publicado: (2020)