Cargando…

Galvanic microcells as control agent of indoor microorganisms

Today, fungicides are part of the basic tool kit for indoor surface maintenance. However, fungi develop resistance to fungicides, which consequently accelerates the evolution of virulence. Fungicides also carry the risk of adverse effects in humans. Galvanic microcells are a new tool for fungal cont...

Descripción completa

Detalles Bibliográficos
Autores principales: Spisak, Wojciech, Chlebicki, Andrzej, Kaszczyszyn, Mariusz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5081506/
https://www.ncbi.nlm.nih.gov/pubmed/27786247
http://dx.doi.org/10.1038/srep35847
Descripción
Sumario:Today, fungicides are part of the basic tool kit for indoor surface maintenance. However, fungi develop resistance to fungicides, which consequently accelerates the evolution of virulence. Fungicides also carry the risk of adverse effects in humans. Galvanic microcells are a new tool for fungal control on indoor surfaces. We used two types of electrodes, Zn and Cu, with two potential anti-fungal mechanisms: the oligodynamic action of the metal ions themselves and the electricidal effect of the current between the electrodes. The size of the inhibition zone is related to the distance between the electrodes. We hypothesized that the unique geometric properties of the observed inhibition zone could be modelled using multi foci curve Cassini ovals. Moreover, the size of the inhibition zone possessed two maximum values, while the shape of the observed inhibition zones correlated with the shape of the electric field strength. The control activity of the galvanic microcells correlated with decreasing water content in building materials. Thus, this acute antifungal system works the best in damp building environments where the risk of fungal contamination is highest.