Cargando…

Temperature- and wavelength-insensitive parametric amplification enabled by noncollinear achromatic phase-matching

Optical parametric chirped-pulse amplification (OPCPA) has been demonstrated to be a promising approach for pushing femtosecond pulses towards ultra-high peak powers. However, the future success of OPCPA strongly relies on the ability to manipulate its phase-matching (PM) configuration. When a high...

Descripción completa

Detalles Bibliográficos
Autores principales: Tang, Daolong, Ma, Jingui, Wang, Jing, Zhou, Bingjie, Xie, Guoqiang, Yuan, Peng, Zhu, Heyuan, Qian, Liejia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5081528/
https://www.ncbi.nlm.nih.gov/pubmed/27786299
http://dx.doi.org/10.1038/srep36059
Descripción
Sumario:Optical parametric chirped-pulse amplification (OPCPA) has been demonstrated to be a promising approach for pushing femtosecond pulses towards ultra-high peak powers. However, the future success of OPCPA strongly relies on the ability to manipulate its phase-matching (PM) configuration. When a high average power pump laser is involved, the thermal effects in nonlinear crystals induce phase-mismatch distortions that pose an inherent limitation on the conversion efficiency. Here, we demonstrate that the noncollinear configuration previously adopted for wavelength-insensitive PM can be employed for temperature-insensitive PM when the noncollinear angle is properly reset. Simultaneous temperature- and wavelength-insensitive PM is realized for the first time by imposing such a temperature-insensitive noncollinear configuration with an angularly dispersed seed signal. Based on the lithium triborate crystal, the proposed noncollinear achromatic PM has a thermal acceptance 6 times larger than that of the conventional wavelength-insensitive noncollinear PM and has a sufficient spectral acceptance to support pulse durations of ~20 fs at 800 nm. These achievements open new possibilities for generating ultra-high peak power lasers with high average power.