Cargando…
Novel Functional Role of NK3R Expression in the Potentiating Effects on Somatolactin α Autoregulation in grass carp pituitary cells
In our previous study, NKB/NK3R system has been shown to act at the pituitary level to up-regulate SLα synthesis and secretion in grass carp. However, whether NK3R expression can serve as a regulatory target at the pituitary level and contribute to NKB interactions with other SLα regulators is still...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5081563/ https://www.ncbi.nlm.nih.gov/pubmed/27786296 http://dx.doi.org/10.1038/srep36102 |
Sumario: | In our previous study, NKB/NK3R system has been shown to act at the pituitary level to up-regulate SLα synthesis and secretion in grass carp. However, whether NK3R expression can serve as a regulatory target at the pituitary level and contribute to NKB interactions with other SLα regulators is still unclear. In current study, using grass carp pituitary cells as a model, we have a novel finding that co-treatment of SLα/SLβ with carp TAC3 gene products, could induce a noticeable enhancement in SLα mRNA expression and these potentiating effects occurred with a parallel rise in NK3R transcript level after SLα/SLβ treatment. Interestingly, the stimulatory effects of SLα/SLβ on NK3R gene expression could be further potentiated by co-treatment with IGF-I/-II and simultaneous exposure of carp pituitary cells to SLα/SLβ and IGF-I/-II in the presence of TAC3 gene products was found to markedly elevated SLα mRNA expression (20 fold increase) and this synergistic stimulation was mediated by cAMP/PKA-, PLC/PKC- and Ca(2+) -dependent cascades functionally coupled with NK3R activation. These findings suggest that local release of SLα via functional interactions with IGF-I/-II and TAC3/NK3R system may constitute a potent stimulatory signal for SLα gene expression in the carp pituitary via up-regulation of NK3R expression. |
---|