Cargando…
Extracellular Microvesicle Production by Human Eosinophils Activated by “Inflammatory” Stimuli
A key function of human eosinophils is to secrete cytokines, chemokines and cationic proteins, trafficking, and releasing these mediators for roles in inflammation and other immune responses. Eosinophil activation leads to secretion of pre-synthesized granule-stored mediators through different mecha...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5081571/ https://www.ncbi.nlm.nih.gov/pubmed/27833910 http://dx.doi.org/10.3389/fcell.2016.00117 |
_version_ | 1782462924638388224 |
---|---|
author | Akuthota, Praveen Carmo, Lívia A. S. Bonjour, Kennedy Murphy, Ryann O. Silva, Thiago P. Gamalier, Juliana P. Capron, Kelsey L. Tigges, John Toxavidis, Vasilis Camacho, Virginia Ghiran, Ionita Ueki, Shigeharu Weller, Peter F. Melo, Rossana C. N. |
author_facet | Akuthota, Praveen Carmo, Lívia A. S. Bonjour, Kennedy Murphy, Ryann O. Silva, Thiago P. Gamalier, Juliana P. Capron, Kelsey L. Tigges, John Toxavidis, Vasilis Camacho, Virginia Ghiran, Ionita Ueki, Shigeharu Weller, Peter F. Melo, Rossana C. N. |
author_sort | Akuthota, Praveen |
collection | PubMed |
description | A key function of human eosinophils is to secrete cytokines, chemokines and cationic proteins, trafficking, and releasing these mediators for roles in inflammation and other immune responses. Eosinophil activation leads to secretion of pre-synthesized granule-stored mediators through different mechanisms, but the ability of eosinophils to secrete extracellular vesicles (EVs), very small vesicles with preserved membrane topology, is still poorly understood. In the present work, we sought to identify and characterize EVs released from human eosinophils during different conditions: after a culturing period or after isolation and stimulation with inflammatory stimuli, which are known to induce eosinophil activation and secretion: CCL11 (eotaxin-1) and tumor necrosis factor alpha (TNF-α). EV production was investigated by nanoscale flow cytometry, conventional transmission electron microscopy (TEM) and pre-embedding immunonanogold EM. The tetraspanins CD63 and CD9 were used as EV biomarkers for both flow cytometry and ultrastructural immunolabeling. Nanoscale flow cytometry showed that human eosinophils produce EVs in culture and that a population of EVs expressed detectable CD9, while CD63 was not consistently detected. When eosinophils were stimulated immediately after isolation and analyzed by TEM, EVs were clearly identified as microvesicles (MVs) outwardly budding off the plasma membrane. Both CCL11 and TNF-α induced significant increases of MVs compared to unstimulated cells. TNF-α induced amplified release of MVs more than CCL11. Eosinophil MV diameters varied from 20 to 1000 nm. Immunonanogold EM revealed clear immunolabeling for CD63 and CD9 on eosinophil MVs, although not all MVs were labeled. Altogether, we identified, for the first time, that human eosinophils secrete MVs and that this production increases in response to inflammatory stimuli. This is important to understand the complex secretory activities of eosinophils underlying immune responses. The contribution of the eosinophil-derived MVs to the regulation of immune responses awaits further investigation. |
format | Online Article Text |
id | pubmed-5081571 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-50815712016-11-10 Extracellular Microvesicle Production by Human Eosinophils Activated by “Inflammatory” Stimuli Akuthota, Praveen Carmo, Lívia A. S. Bonjour, Kennedy Murphy, Ryann O. Silva, Thiago P. Gamalier, Juliana P. Capron, Kelsey L. Tigges, John Toxavidis, Vasilis Camacho, Virginia Ghiran, Ionita Ueki, Shigeharu Weller, Peter F. Melo, Rossana C. N. Front Cell Dev Biol Cell and Developmental Biology A key function of human eosinophils is to secrete cytokines, chemokines and cationic proteins, trafficking, and releasing these mediators for roles in inflammation and other immune responses. Eosinophil activation leads to secretion of pre-synthesized granule-stored mediators through different mechanisms, but the ability of eosinophils to secrete extracellular vesicles (EVs), very small vesicles with preserved membrane topology, is still poorly understood. In the present work, we sought to identify and characterize EVs released from human eosinophils during different conditions: after a culturing period or after isolation and stimulation with inflammatory stimuli, which are known to induce eosinophil activation and secretion: CCL11 (eotaxin-1) and tumor necrosis factor alpha (TNF-α). EV production was investigated by nanoscale flow cytometry, conventional transmission electron microscopy (TEM) and pre-embedding immunonanogold EM. The tetraspanins CD63 and CD9 were used as EV biomarkers for both flow cytometry and ultrastructural immunolabeling. Nanoscale flow cytometry showed that human eosinophils produce EVs in culture and that a population of EVs expressed detectable CD9, while CD63 was not consistently detected. When eosinophils were stimulated immediately after isolation and analyzed by TEM, EVs were clearly identified as microvesicles (MVs) outwardly budding off the plasma membrane. Both CCL11 and TNF-α induced significant increases of MVs compared to unstimulated cells. TNF-α induced amplified release of MVs more than CCL11. Eosinophil MV diameters varied from 20 to 1000 nm. Immunonanogold EM revealed clear immunolabeling for CD63 and CD9 on eosinophil MVs, although not all MVs were labeled. Altogether, we identified, for the first time, that human eosinophils secrete MVs and that this production increases in response to inflammatory stimuli. This is important to understand the complex secretory activities of eosinophils underlying immune responses. The contribution of the eosinophil-derived MVs to the regulation of immune responses awaits further investigation. Frontiers Media S.A. 2016-10-27 /pmc/articles/PMC5081571/ /pubmed/27833910 http://dx.doi.org/10.3389/fcell.2016.00117 Text en Copyright © 2016 Akuthota, Carmo, Bonjour, Murphy, Silva, Gamalier, Capron, Tigges, Toxavidis, Camacho, Ghiran, Ueki, Weller and Melo. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Cell and Developmental Biology Akuthota, Praveen Carmo, Lívia A. S. Bonjour, Kennedy Murphy, Ryann O. Silva, Thiago P. Gamalier, Juliana P. Capron, Kelsey L. Tigges, John Toxavidis, Vasilis Camacho, Virginia Ghiran, Ionita Ueki, Shigeharu Weller, Peter F. Melo, Rossana C. N. Extracellular Microvesicle Production by Human Eosinophils Activated by “Inflammatory” Stimuli |
title | Extracellular Microvesicle Production by Human Eosinophils Activated by “Inflammatory” Stimuli |
title_full | Extracellular Microvesicle Production by Human Eosinophils Activated by “Inflammatory” Stimuli |
title_fullStr | Extracellular Microvesicle Production by Human Eosinophils Activated by “Inflammatory” Stimuli |
title_full_unstemmed | Extracellular Microvesicle Production by Human Eosinophils Activated by “Inflammatory” Stimuli |
title_short | Extracellular Microvesicle Production by Human Eosinophils Activated by “Inflammatory” Stimuli |
title_sort | extracellular microvesicle production by human eosinophils activated by “inflammatory” stimuli |
topic | Cell and Developmental Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5081571/ https://www.ncbi.nlm.nih.gov/pubmed/27833910 http://dx.doi.org/10.3389/fcell.2016.00117 |
work_keys_str_mv | AT akuthotapraveen extracellularmicrovesicleproductionbyhumaneosinophilsactivatedbyinflammatorystimuli AT carmoliviaas extracellularmicrovesicleproductionbyhumaneosinophilsactivatedbyinflammatorystimuli AT bonjourkennedy extracellularmicrovesicleproductionbyhumaneosinophilsactivatedbyinflammatorystimuli AT murphyryanno extracellularmicrovesicleproductionbyhumaneosinophilsactivatedbyinflammatorystimuli AT silvathiagop extracellularmicrovesicleproductionbyhumaneosinophilsactivatedbyinflammatorystimuli AT gamalierjulianap extracellularmicrovesicleproductionbyhumaneosinophilsactivatedbyinflammatorystimuli AT capronkelseyl extracellularmicrovesicleproductionbyhumaneosinophilsactivatedbyinflammatorystimuli AT tiggesjohn extracellularmicrovesicleproductionbyhumaneosinophilsactivatedbyinflammatorystimuli AT toxavidisvasilis extracellularmicrovesicleproductionbyhumaneosinophilsactivatedbyinflammatorystimuli AT camachovirginia extracellularmicrovesicleproductionbyhumaneosinophilsactivatedbyinflammatorystimuli AT ghiranionita extracellularmicrovesicleproductionbyhumaneosinophilsactivatedbyinflammatorystimuli AT uekishigeharu extracellularmicrovesicleproductionbyhumaneosinophilsactivatedbyinflammatorystimuli AT wellerpeterf extracellularmicrovesicleproductionbyhumaneosinophilsactivatedbyinflammatorystimuli AT melorossanacn extracellularmicrovesicleproductionbyhumaneosinophilsactivatedbyinflammatorystimuli |