Cargando…

Combined small angle X-ray solution scattering with atomic force microscopy for characterizing radiation damage on biological macromolecules

BACKGROUND: Synchrotron radiation facilities are pillars of modern structural biology. Small-Angle X-ray scattering performed at synchrotron sources is often used to characterize the shape of biological macromolecules. A major challenge with high-energy X-ray beam on such macromolecules is the pertu...

Descripción completa

Detalles Bibliográficos
Autores principales: Costa, Luca, Andriatis, Alexander, Brennich, Martha, Teulon, Jean-Marie, Chen, Shu-wen W., Pellequer, Jean-Luc, Round, Adam
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5081678/
https://www.ncbi.nlm.nih.gov/pubmed/27788689
http://dx.doi.org/10.1186/s12900-016-0068-2
Descripción
Sumario:BACKGROUND: Synchrotron radiation facilities are pillars of modern structural biology. Small-Angle X-ray scattering performed at synchrotron sources is often used to characterize the shape of biological macromolecules. A major challenge with high-energy X-ray beam on such macromolecules is the perturbation of sample due to radiation damage. RESULTS: By employing atomic force microscopy, another common technique to determine the shape of biological macromolecules when deposited on flat substrates, we present a protocol to evaluate and characterize consequences of radiation damage. It requires the acquisition of images of irradiated samples at the single molecule level in a timely manner while using minimal amounts of protein. The protocol has been tested on two different molecular systems: a large globular tetremeric enzyme (β-Amylase) and a rod-shape plant virus (tobacco mosaic virus). Radiation damage on the globular enzyme leads to an apparent increase in molecular sizes whereas the effect on the long virus is a breakage into smaller pieces resulting in a decrease of the average long-axis radius. CONCLUSIONS: These results show that radiation damage can appear in different forms and strongly support the need to check the effect of radiation damage at synchrotron sources using the presented protocol.