Cargando…

Photodynamic Therapy and Non-Melanoma Skin Cancer

Non-melanoma skin cancer (NMSC) is the most common malignancy among the Caucasian population. Photodynamic therapy (PDT) is gaining popularity for the treatment of basal cell carcinoma (BCC), Bowen’s disease (BD) and actinic keratosis (AK). A topical or systemic exogenous photosensitiser, results in...

Descripción completa

Detalles Bibliográficos
Autores principales: Griffin, Liezel L., Lear, John T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5082388/
https://www.ncbi.nlm.nih.gov/pubmed/27782094
http://dx.doi.org/10.3390/cancers8100098
Descripción
Sumario:Non-melanoma skin cancer (NMSC) is the most common malignancy among the Caucasian population. Photodynamic therapy (PDT) is gaining popularity for the treatment of basal cell carcinoma (BCC), Bowen’s disease (BD) and actinic keratosis (AK). A topical or systemic exogenous photosensitiser, results in selective uptake by malignant cells. Protoporphyrin IX (PpIX) is produced then activated by the introduction of a light source. Daylight-mediated MAL (methyl aminolaevulinate) PDT for AKs has the advantage of decreased pain and better patient tolerance. PDT is an effective treatment for superficial BCC, BD and both individual and field treatment of AKs. Excellent cosmesis can be achieved with high patient satisfaction. Variable results have been reported for nodular BCC, with improved outcomes following pretreatment and repeated PDT cycles. The more aggressive basisquamous, morphoeic infiltrating subtypes of BCC and invasive squamous cell carcinoma (SCC) are not suitable for PDT. Prevention of “field cancerization” in organ transplant recipients on long-term immunosuppression and patients with Gorlin syndrome (naevoid basal cell carcinoma syndrome) is a promising development. The optimisation of PDT techniques with improved photosensitiser delivery to target tissues, new generation photosensitisers and novel light sources may expand the future role of PDT in NMSC management.