Cargando…

Dose and Fractionation in Radiation Therapy of Curative Intent for Non-Small Cell Lung Cancer: Meta-Analysis of Randomized Trials

PURPOSE: The optimum dose and fractionation in radiation therapy of curative intent for non-small cell lung cancer remains uncertain. We undertook a published data meta-analysis of randomized trials to examine whether radiation therapy regimens with higher time-corrected biologically equivalent dose...

Descripción completa

Detalles Bibliográficos
Autores principales: Ramroth, Johanna, Cutter, David J., Darby, Sarah C., Higgins, Geoff S., McGale, Paul, Partridge, Mike, Taylor, Carolyn W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Science Inc 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5082441/
https://www.ncbi.nlm.nih.gov/pubmed/27639294
http://dx.doi.org/10.1016/j.ijrobp.2016.07.022
Descripción
Sumario:PURPOSE: The optimum dose and fractionation in radiation therapy of curative intent for non-small cell lung cancer remains uncertain. We undertook a published data meta-analysis of randomized trials to examine whether radiation therapy regimens with higher time-corrected biologically equivalent doses resulted in longer survival, either when given alone or when given with chemotherapy. METHODS AND MATERIALS: Eligible studies were randomized comparisons of 2 or more radiation therapy regimens, with other treatments identical. Median survival ratios were calculated for each comparison and pooled. RESULTS: 3795 patients in 25 randomized comparisons of radiation therapy dose were studied. The median survival ratio, higher versus lower corrected dose, was 1.13 (95% confidence interval [CI] 1.04-1.22) when radiation therapy was given alone and 0.83 (95% CI 0.71-0.97) when it was given with concurrent chemotherapy (P for difference=.001). In comparisons of radiation therapy given alone, the survival benefit increased with increasing dose difference between randomized treatment arms (P for trend=.004). The benefit increased with increasing dose in the lower-dose arm (P for trend=.01) without reaching a level beyond which no further survival benefit was achieved. The survival benefit did not differ significantly between randomized comparisons where the higher-dose arm was hyperfractionated and those where it was not. There was heterogeneity in the median survival ratio by geographic region (P<.001), average age at randomization (P<.001), and year trial started (P for trend=.004), but not for proportion of patients with squamous cell carcinoma (P=.2). CONCLUSIONS: In trials with concurrent chemotherapy, higher radiation therapy doses resulted in poorer survival, possibly caused, at least in part, by high levels of toxicity. Where radiation therapy was given without chemotherapy, progressively higher radiation therapy doses resulted in progressively longer survival, and no upper dose level was found above which there was no further benefit. These findings support the consideration of further radiation therapy dose escalation trials, making use of modern treatment methods to reduce toxicity.