Cargando…
Adiabatic superconducting cells for ultra-low-power artificial neural networks
We propose the concept of using superconducting quantum interferometers for the implementation of neural network algorithms with extremely low power dissipation. These adiabatic elements are Josephson cells with sigmoid- and Gaussian-like activation functions. We optimize their parameters for applic...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Beilstein-Institut
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5082478/ https://www.ncbi.nlm.nih.gov/pubmed/27826513 http://dx.doi.org/10.3762/bjnano.7.130 |
_version_ | 1782463064875991040 |
---|---|
author | Schegolev, Andrey E Klenov, Nikolay V Soloviev, Igor I Tereshonok, Maxim V |
author_facet | Schegolev, Andrey E Klenov, Nikolay V Soloviev, Igor I Tereshonok, Maxim V |
author_sort | Schegolev, Andrey E |
collection | PubMed |
description | We propose the concept of using superconducting quantum interferometers for the implementation of neural network algorithms with extremely low power dissipation. These adiabatic elements are Josephson cells with sigmoid- and Gaussian-like activation functions. We optimize their parameters for application in three-layer perceptron and radial basis function networks. |
format | Online Article Text |
id | pubmed-5082478 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Beilstein-Institut |
record_format | MEDLINE/PubMed |
spelling | pubmed-50824782016-11-08 Adiabatic superconducting cells for ultra-low-power artificial neural networks Schegolev, Andrey E Klenov, Nikolay V Soloviev, Igor I Tereshonok, Maxim V Beilstein J Nanotechnol Letter We propose the concept of using superconducting quantum interferometers for the implementation of neural network algorithms with extremely low power dissipation. These adiabatic elements are Josephson cells with sigmoid- and Gaussian-like activation functions. We optimize their parameters for application in three-layer perceptron and radial basis function networks. Beilstein-Institut 2016-10-05 /pmc/articles/PMC5082478/ /pubmed/27826513 http://dx.doi.org/10.3762/bjnano.7.130 Text en Copyright © 2016, Schegolev et al. https://creativecommons.org/licenses/by/4.0https://www.beilstein-journals.org/bjnano/termsThis is an Open Access article under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The license is subject to the Beilstein Journal of Nanotechnology terms and conditions: (https://www.beilstein-journals.org/bjnano/terms) |
spellingShingle | Letter Schegolev, Andrey E Klenov, Nikolay V Soloviev, Igor I Tereshonok, Maxim V Adiabatic superconducting cells for ultra-low-power artificial neural networks |
title | Adiabatic superconducting cells for ultra-low-power artificial neural networks |
title_full | Adiabatic superconducting cells for ultra-low-power artificial neural networks |
title_fullStr | Adiabatic superconducting cells for ultra-low-power artificial neural networks |
title_full_unstemmed | Adiabatic superconducting cells for ultra-low-power artificial neural networks |
title_short | Adiabatic superconducting cells for ultra-low-power artificial neural networks |
title_sort | adiabatic superconducting cells for ultra-low-power artificial neural networks |
topic | Letter |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5082478/ https://www.ncbi.nlm.nih.gov/pubmed/27826513 http://dx.doi.org/10.3762/bjnano.7.130 |
work_keys_str_mv | AT schegolevandreye adiabaticsuperconductingcellsforultralowpowerartificialneuralnetworks AT klenovnikolayv adiabaticsuperconductingcellsforultralowpowerartificialneuralnetworks AT solovievigori adiabaticsuperconductingcellsforultralowpowerartificialneuralnetworks AT tereshonokmaximv adiabaticsuperconductingcellsforultralowpowerartificialneuralnetworks |