Cargando…

Adiabatic superconducting cells for ultra-low-power artificial neural networks

We propose the concept of using superconducting quantum interferometers for the implementation of neural network algorithms with extremely low power dissipation. These adiabatic elements are Josephson cells with sigmoid- and Gaussian-like activation functions. We optimize their parameters for applic...

Descripción completa

Detalles Bibliográficos
Autores principales: Schegolev, Andrey E, Klenov, Nikolay V, Soloviev, Igor I, Tereshonok, Maxim V
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Beilstein-Institut 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5082478/
https://www.ncbi.nlm.nih.gov/pubmed/27826513
http://dx.doi.org/10.3762/bjnano.7.130
_version_ 1782463064875991040
author Schegolev, Andrey E
Klenov, Nikolay V
Soloviev, Igor I
Tereshonok, Maxim V
author_facet Schegolev, Andrey E
Klenov, Nikolay V
Soloviev, Igor I
Tereshonok, Maxim V
author_sort Schegolev, Andrey E
collection PubMed
description We propose the concept of using superconducting quantum interferometers for the implementation of neural network algorithms with extremely low power dissipation. These adiabatic elements are Josephson cells with sigmoid- and Gaussian-like activation functions. We optimize their parameters for application in three-layer perceptron and radial basis function networks.
format Online
Article
Text
id pubmed-5082478
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Beilstein-Institut
record_format MEDLINE/PubMed
spelling pubmed-50824782016-11-08 Adiabatic superconducting cells for ultra-low-power artificial neural networks Schegolev, Andrey E Klenov, Nikolay V Soloviev, Igor I Tereshonok, Maxim V Beilstein J Nanotechnol Letter We propose the concept of using superconducting quantum interferometers for the implementation of neural network algorithms with extremely low power dissipation. These adiabatic elements are Josephson cells with sigmoid- and Gaussian-like activation functions. We optimize their parameters for application in three-layer perceptron and radial basis function networks. Beilstein-Institut 2016-10-05 /pmc/articles/PMC5082478/ /pubmed/27826513 http://dx.doi.org/10.3762/bjnano.7.130 Text en Copyright © 2016, Schegolev et al. https://creativecommons.org/licenses/by/4.0https://www.beilstein-journals.org/bjnano/termsThis is an Open Access article under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The license is subject to the Beilstein Journal of Nanotechnology terms and conditions: (https://www.beilstein-journals.org/bjnano/terms)
spellingShingle Letter
Schegolev, Andrey E
Klenov, Nikolay V
Soloviev, Igor I
Tereshonok, Maxim V
Adiabatic superconducting cells for ultra-low-power artificial neural networks
title Adiabatic superconducting cells for ultra-low-power artificial neural networks
title_full Adiabatic superconducting cells for ultra-low-power artificial neural networks
title_fullStr Adiabatic superconducting cells for ultra-low-power artificial neural networks
title_full_unstemmed Adiabatic superconducting cells for ultra-low-power artificial neural networks
title_short Adiabatic superconducting cells for ultra-low-power artificial neural networks
title_sort adiabatic superconducting cells for ultra-low-power artificial neural networks
topic Letter
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5082478/
https://www.ncbi.nlm.nih.gov/pubmed/27826513
http://dx.doi.org/10.3762/bjnano.7.130
work_keys_str_mv AT schegolevandreye adiabaticsuperconductingcellsforultralowpowerartificialneuralnetworks
AT klenovnikolayv adiabaticsuperconductingcellsforultralowpowerartificialneuralnetworks
AT solovievigori adiabaticsuperconductingcellsforultralowpowerartificialneuralnetworks
AT tereshonokmaximv adiabaticsuperconductingcellsforultralowpowerartificialneuralnetworks