Cargando…
Comparative genomic, proteomic and exoproteomic analyses of three Pseudomonas strains reveals novel insights into the phosphorus scavenging capabilities of soil bacteria
Bacteria that inhabit the rhizosphere of agricultural crops can have a beneficial effect on crop growth. One such mechanism is the microbial‐driven solubilization and remineralization of complex forms of phosphorus (P). It is known that bacteria secrete various phosphatases in response to low P cond...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5082522/ https://www.ncbi.nlm.nih.gov/pubmed/27233093 http://dx.doi.org/10.1111/1462-2920.13390 |
_version_ | 1782463072374358016 |
---|---|
author | Lidbury, Ian D. E. A. Murphy, Andrew R. J. Scanlan, David J. Bending, Gary D. Jones, Alexandra M. E. Moore, Jonathan D. Goodall, Andrew Hammond, John P. Wellington, Elizabeth M. H. |
author_facet | Lidbury, Ian D. E. A. Murphy, Andrew R. J. Scanlan, David J. Bending, Gary D. Jones, Alexandra M. E. Moore, Jonathan D. Goodall, Andrew Hammond, John P. Wellington, Elizabeth M. H. |
author_sort | Lidbury, Ian D. E. A. |
collection | PubMed |
description | Bacteria that inhabit the rhizosphere of agricultural crops can have a beneficial effect on crop growth. One such mechanism is the microbial‐driven solubilization and remineralization of complex forms of phosphorus (P). It is known that bacteria secrete various phosphatases in response to low P conditions. However, our understanding of their global proteomic response to P stress is limited. Here, exoproteomic analysis of Pseudomonas putida BIRD‐1 (BIRD‐1), Pseudomonas fluorescens SBW25 and Pseudomonas stutzeri DSM4166 was performed in unison with whole‐cell proteomic analysis of BIRD‐1 grown under phosphate (Pi) replete and Pi deplete conditions. Comparative exoproteomics revealed marked heterogeneity in the exoproteomes of each Pseudomonas strain in response to Pi depletion. In addition to well‐characterized members of the PHO regulon such as alkaline phosphatases, several proteins, previously not associated with the response to Pi depletion, were also identified. These included putative nucleases, phosphotriesterases, putative phosphonate transporters and outer membrane proteins. Moreover, in BIRD‐1, mutagenesis of the master regulator, phoBR, led us to confirm the addition of several novel PHO‐dependent proteins. Our data expands knowledge of the Pseudomonas PHO regulon, including species that are frequently used as bioinoculants, opening up the potential for more efficient and complete use of soil complexed P. |
format | Online Article Text |
id | pubmed-5082522 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-50825222016-11-09 Comparative genomic, proteomic and exoproteomic analyses of three Pseudomonas strains reveals novel insights into the phosphorus scavenging capabilities of soil bacteria Lidbury, Ian D. E. A. Murphy, Andrew R. J. Scanlan, David J. Bending, Gary D. Jones, Alexandra M. E. Moore, Jonathan D. Goodall, Andrew Hammond, John P. Wellington, Elizabeth M. H. Environ Microbiol Research Articles Bacteria that inhabit the rhizosphere of agricultural crops can have a beneficial effect on crop growth. One such mechanism is the microbial‐driven solubilization and remineralization of complex forms of phosphorus (P). It is known that bacteria secrete various phosphatases in response to low P conditions. However, our understanding of their global proteomic response to P stress is limited. Here, exoproteomic analysis of Pseudomonas putida BIRD‐1 (BIRD‐1), Pseudomonas fluorescens SBW25 and Pseudomonas stutzeri DSM4166 was performed in unison with whole‐cell proteomic analysis of BIRD‐1 grown under phosphate (Pi) replete and Pi deplete conditions. Comparative exoproteomics revealed marked heterogeneity in the exoproteomes of each Pseudomonas strain in response to Pi depletion. In addition to well‐characterized members of the PHO regulon such as alkaline phosphatases, several proteins, previously not associated with the response to Pi depletion, were also identified. These included putative nucleases, phosphotriesterases, putative phosphonate transporters and outer membrane proteins. Moreover, in BIRD‐1, mutagenesis of the master regulator, phoBR, led us to confirm the addition of several novel PHO‐dependent proteins. Our data expands knowledge of the Pseudomonas PHO regulon, including species that are frequently used as bioinoculants, opening up the potential for more efficient and complete use of soil complexed P. John Wiley and Sons Inc. 2016-07-07 2016-10 /pmc/articles/PMC5082522/ /pubmed/27233093 http://dx.doi.org/10.1111/1462-2920.13390 Text en © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Lidbury, Ian D. E. A. Murphy, Andrew R. J. Scanlan, David J. Bending, Gary D. Jones, Alexandra M. E. Moore, Jonathan D. Goodall, Andrew Hammond, John P. Wellington, Elizabeth M. H. Comparative genomic, proteomic and exoproteomic analyses of three Pseudomonas strains reveals novel insights into the phosphorus scavenging capabilities of soil bacteria |
title | Comparative genomic, proteomic and exoproteomic analyses of three Pseudomonas strains reveals novel insights into the phosphorus scavenging capabilities of soil bacteria |
title_full | Comparative genomic, proteomic and exoproteomic analyses of three Pseudomonas strains reveals novel insights into the phosphorus scavenging capabilities of soil bacteria |
title_fullStr | Comparative genomic, proteomic and exoproteomic analyses of three Pseudomonas strains reveals novel insights into the phosphorus scavenging capabilities of soil bacteria |
title_full_unstemmed | Comparative genomic, proteomic and exoproteomic analyses of three Pseudomonas strains reveals novel insights into the phosphorus scavenging capabilities of soil bacteria |
title_short | Comparative genomic, proteomic and exoproteomic analyses of three Pseudomonas strains reveals novel insights into the phosphorus scavenging capabilities of soil bacteria |
title_sort | comparative genomic, proteomic and exoproteomic analyses of three pseudomonas strains reveals novel insights into the phosphorus scavenging capabilities of soil bacteria |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5082522/ https://www.ncbi.nlm.nih.gov/pubmed/27233093 http://dx.doi.org/10.1111/1462-2920.13390 |
work_keys_str_mv | AT lidburyiandea comparativegenomicproteomicandexoproteomicanalysesofthreepseudomonasstrainsrevealsnovelinsightsintothephosphorusscavengingcapabilitiesofsoilbacteria AT murphyandrewrj comparativegenomicproteomicandexoproteomicanalysesofthreepseudomonasstrainsrevealsnovelinsightsintothephosphorusscavengingcapabilitiesofsoilbacteria AT scanlandavidj comparativegenomicproteomicandexoproteomicanalysesofthreepseudomonasstrainsrevealsnovelinsightsintothephosphorusscavengingcapabilitiesofsoilbacteria AT bendinggaryd comparativegenomicproteomicandexoproteomicanalysesofthreepseudomonasstrainsrevealsnovelinsightsintothephosphorusscavengingcapabilitiesofsoilbacteria AT jonesalexandrame comparativegenomicproteomicandexoproteomicanalysesofthreepseudomonasstrainsrevealsnovelinsightsintothephosphorusscavengingcapabilitiesofsoilbacteria AT moorejonathand comparativegenomicproteomicandexoproteomicanalysesofthreepseudomonasstrainsrevealsnovelinsightsintothephosphorusscavengingcapabilitiesofsoilbacteria AT goodallandrew comparativegenomicproteomicandexoproteomicanalysesofthreepseudomonasstrainsrevealsnovelinsightsintothephosphorusscavengingcapabilitiesofsoilbacteria AT hammondjohnp comparativegenomicproteomicandexoproteomicanalysesofthreepseudomonasstrainsrevealsnovelinsightsintothephosphorusscavengingcapabilitiesofsoilbacteria AT wellingtonelizabethmh comparativegenomicproteomicandexoproteomicanalysesofthreepseudomonasstrainsrevealsnovelinsightsintothephosphorusscavengingcapabilitiesofsoilbacteria |