Cargando…
A general framework for updating belief distributions
We propose a framework for general Bayesian inference. We argue that a valid update of a prior belief distribution to a posterior can be made for parameters which are connected to observations through a loss function rather than the traditional likelihood function, which is recovered as a special ca...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5082587/ https://www.ncbi.nlm.nih.gov/pubmed/27840585 http://dx.doi.org/10.1111/rssb.12158 |
_version_ | 1782463088342073344 |
---|---|
author | Bissiri, P. G. Holmes, C. C. Walker, S. G. |
author_facet | Bissiri, P. G. Holmes, C. C. Walker, S. G. |
author_sort | Bissiri, P. G. |
collection | PubMed |
description | We propose a framework for general Bayesian inference. We argue that a valid update of a prior belief distribution to a posterior can be made for parameters which are connected to observations through a loss function rather than the traditional likelihood function, which is recovered as a special case. Modern application areas make it increasingly challenging for Bayesians to attempt to model the true data‐generating mechanism. For instance, when the object of interest is low dimensional, such as a mean or median, it is cumbersome to have to achieve this via a complete model for the whole data distribution. More importantly, there are settings where the parameter of interest does not directly index a family of density functions and thus the Bayesian approach to learning about such parameters is currently regarded as problematic. Our framework uses loss functions to connect information in the data to functionals of interest. The updating of beliefs then follows from a decision theoretic approach involving cumulative loss functions. Importantly, the procedure coincides with Bayesian updating when a true likelihood is known yet provides coherent subjective inference in much more general settings. Connections to other inference frameworks are highlighted. |
format | Online Article Text |
id | pubmed-5082587 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-50825872016-11-09 A general framework for updating belief distributions Bissiri, P. G. Holmes, C. C. Walker, S. G. J R Stat Soc Series B Stat Methodol Original Articles We propose a framework for general Bayesian inference. We argue that a valid update of a prior belief distribution to a posterior can be made for parameters which are connected to observations through a loss function rather than the traditional likelihood function, which is recovered as a special case. Modern application areas make it increasingly challenging for Bayesians to attempt to model the true data‐generating mechanism. For instance, when the object of interest is low dimensional, such as a mean or median, it is cumbersome to have to achieve this via a complete model for the whole data distribution. More importantly, there are settings where the parameter of interest does not directly index a family of density functions and thus the Bayesian approach to learning about such parameters is currently regarded as problematic. Our framework uses loss functions to connect information in the data to functionals of interest. The updating of beliefs then follows from a decision theoretic approach involving cumulative loss functions. Importantly, the procedure coincides with Bayesian updating when a true likelihood is known yet provides coherent subjective inference in much more general settings. Connections to other inference frameworks are highlighted. John Wiley and Sons Inc. 2016-02-23 2016-11 /pmc/articles/PMC5082587/ /pubmed/27840585 http://dx.doi.org/10.1111/rssb.12158 Text en © 2016 The Authors Journal of the Royal Statistical Society: Series B Statistical Methodology published by John Wiley & Sons Ltd on behalf of the Royal Statistical Society. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Bissiri, P. G. Holmes, C. C. Walker, S. G. A general framework for updating belief distributions |
title | A general framework for updating belief distributions |
title_full | A general framework for updating belief distributions |
title_fullStr | A general framework for updating belief distributions |
title_full_unstemmed | A general framework for updating belief distributions |
title_short | A general framework for updating belief distributions |
title_sort | general framework for updating belief distributions |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5082587/ https://www.ncbi.nlm.nih.gov/pubmed/27840585 http://dx.doi.org/10.1111/rssb.12158 |
work_keys_str_mv | AT bissiripg ageneralframeworkforupdatingbeliefdistributions AT holmescc ageneralframeworkforupdatingbeliefdistributions AT walkersg ageneralframeworkforupdatingbeliefdistributions AT bissiripg generalframeworkforupdatingbeliefdistributions AT holmescc generalframeworkforupdatingbeliefdistributions AT walkersg generalframeworkforupdatingbeliefdistributions |