Cargando…
A general framework for updating belief distributions
We propose a framework for general Bayesian inference. We argue that a valid update of a prior belief distribution to a posterior can be made for parameters which are connected to observations through a loss function rather than the traditional likelihood function, which is recovered as a special ca...
Autores principales: | Bissiri, P. G., Holmes, C. C., Walker, S. G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5082587/ https://www.ncbi.nlm.nih.gov/pubmed/27840585 http://dx.doi.org/10.1111/rssb.12158 |
Ejemplares similares
-
A Definition of Conditional Probability with Non-Stochastic Information
por: Bissiri, Pier Giovanni, et al.
Publicado: (2018) -
Updating Beliefs under Perceived Threat
por: Garrett, Neil, et al.
Publicado: (2018) -
Paranoia and belief updating during a crisis
por: Suthaharan, Praveen, et al.
Publicado: (2021) -
Paranoia and belief updating during the COVID-19 crisis
por: Suthaharan, Praveen, et al.
Publicado: (2021) -
The effects of base rate neglect on sequential belief updating and real-world beliefs
por: Ashinoff, Brandon K., et al.
Publicado: (2022)