Cargando…

Of Rings and Rods: Regulating Cohesin Entrapment of DNA to Generate Intra- and Intermolecular Tethers

The clinical relevance of cohesin in DNA repair, tumorigenesis, and severe birth defects continues to fuel efforts in understanding cohesin structure, regulation, and enzymology. Early models depicting huge cohesin rings that entrap two DNA segments within a single lumen are fading into obscurity ba...

Descripción completa

Detalles Bibliográficos
Autor principal: Skibbens, Robert V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5082857/
https://www.ncbi.nlm.nih.gov/pubmed/27788133
http://dx.doi.org/10.1371/journal.pgen.1006337
Descripción
Sumario:The clinical relevance of cohesin in DNA repair, tumorigenesis, and severe birth defects continues to fuel efforts in understanding cohesin structure, regulation, and enzymology. Early models depicting huge cohesin rings that entrap two DNA segments within a single lumen are fading into obscurity based on contradictory findings, but elucidating cohesin structure amid a myriad of functions remains challenging. Due in large part to integrated uses of a wide range of methodologies, recent advances are beginning to cast light into the depths that previously cloaked cohesin structure. Additional efforts similarly provide new insights into cohesin enzymology: specifically, the discoveries of ATP-dependent transitions that promote cohesin binding and release from DNA. In combination, these efforts posit a new model that cohesin exists primarily as a relatively flattened structure that entraps only a single DNA molecule and that subsequent ATP hydrolysis, acetylation, and oligomeric assembly tether together individual DNA segments.