Cargando…
The Anti-Inflammatory Effect of Spray-Dried Plasma Is Mediated by a Reduction in Mucosal Lymphocyte Activation and Infiltration in a Mouse Model of Intestinal Inflammation
Spray-dried preparations from porcine and bovine plasma can alleviate mucosal inflammation in experimental models and improve symptoms in patients with enteropathy. In rodents, dietary supplementation with porcine spray-dried plasma (SDP) attenuates intestinal inflammation and improves the epithelia...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5084043/ https://www.ncbi.nlm.nih.gov/pubmed/27782068 http://dx.doi.org/10.3390/nu8100657 |
_version_ | 1782463334454394880 |
---|---|
author | Pérez-Bosque, Anna Miró, Lluïsa Amat, Concepció Polo, Javier Moretó, Miquel |
author_facet | Pérez-Bosque, Anna Miró, Lluïsa Amat, Concepció Polo, Javier Moretó, Miquel |
author_sort | Pérez-Bosque, Anna |
collection | PubMed |
description | Spray-dried preparations from porcine and bovine plasma can alleviate mucosal inflammation in experimental models and improve symptoms in patients with enteropathy. In rodents, dietary supplementation with porcine spray-dried plasma (SDP) attenuates intestinal inflammation and improves the epithelial barrier function during intestinal inflammation induced by Staphylococcus aureus enterotoxin B (SEB). The aim of this study was to discern the molecular mechanisms involved in the anti-inflammatory effects of SDP. Male C57BL/6 mice were fed with 8% SDP or control diet (based on milk proteins) for two weeks, from weaning until day 33. On day 32, the mice were given a SEB dose (i.p., 25 µg/mouse) or vehicle. SEB administration increased cell recruitment to mesenteric lymph nodes and the percentage of activated Th lymphocytes and SDP prevented these effects). SDP supplementation increased the expression of interleukin 10 (IL-10) or transforming growth factor- β (TGF-β) compared to the SEB group. The SEB challenge increased six-fold the expression of mucosal addressin cell adhesion molecule 1 (MAdCAM-1) and intercellular adhesion molecule 1 (ICAM-1); and these effects were attenuated by SDP supplementation. SEB also augmented NF-κB phosphorylation, an effect that was prevented by dietary SDP. Our results indicate that the anti-inflammatory effects of SDP involve the regulation of transcription factors and adhesion molecules that reduce intestinal cell infiltration and the degree of the inflammatory response. |
format | Online Article Text |
id | pubmed-5084043 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-50840432016-11-01 The Anti-Inflammatory Effect of Spray-Dried Plasma Is Mediated by a Reduction in Mucosal Lymphocyte Activation and Infiltration in a Mouse Model of Intestinal Inflammation Pérez-Bosque, Anna Miró, Lluïsa Amat, Concepció Polo, Javier Moretó, Miquel Nutrients Article Spray-dried preparations from porcine and bovine plasma can alleviate mucosal inflammation in experimental models and improve symptoms in patients with enteropathy. In rodents, dietary supplementation with porcine spray-dried plasma (SDP) attenuates intestinal inflammation and improves the epithelial barrier function during intestinal inflammation induced by Staphylococcus aureus enterotoxin B (SEB). The aim of this study was to discern the molecular mechanisms involved in the anti-inflammatory effects of SDP. Male C57BL/6 mice were fed with 8% SDP or control diet (based on milk proteins) for two weeks, from weaning until day 33. On day 32, the mice were given a SEB dose (i.p., 25 µg/mouse) or vehicle. SEB administration increased cell recruitment to mesenteric lymph nodes and the percentage of activated Th lymphocytes and SDP prevented these effects). SDP supplementation increased the expression of interleukin 10 (IL-10) or transforming growth factor- β (TGF-β) compared to the SEB group. The SEB challenge increased six-fold the expression of mucosal addressin cell adhesion molecule 1 (MAdCAM-1) and intercellular adhesion molecule 1 (ICAM-1); and these effects were attenuated by SDP supplementation. SEB also augmented NF-κB phosphorylation, an effect that was prevented by dietary SDP. Our results indicate that the anti-inflammatory effects of SDP involve the regulation of transcription factors and adhesion molecules that reduce intestinal cell infiltration and the degree of the inflammatory response. MDPI 2016-10-22 /pmc/articles/PMC5084043/ /pubmed/27782068 http://dx.doi.org/10.3390/nu8100657 Text en © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Pérez-Bosque, Anna Miró, Lluïsa Amat, Concepció Polo, Javier Moretó, Miquel The Anti-Inflammatory Effect of Spray-Dried Plasma Is Mediated by a Reduction in Mucosal Lymphocyte Activation and Infiltration in a Mouse Model of Intestinal Inflammation |
title | The Anti-Inflammatory Effect of Spray-Dried Plasma Is Mediated by a Reduction in Mucosal Lymphocyte Activation and Infiltration in a Mouse Model of Intestinal Inflammation |
title_full | The Anti-Inflammatory Effect of Spray-Dried Plasma Is Mediated by a Reduction in Mucosal Lymphocyte Activation and Infiltration in a Mouse Model of Intestinal Inflammation |
title_fullStr | The Anti-Inflammatory Effect of Spray-Dried Plasma Is Mediated by a Reduction in Mucosal Lymphocyte Activation and Infiltration in a Mouse Model of Intestinal Inflammation |
title_full_unstemmed | The Anti-Inflammatory Effect of Spray-Dried Plasma Is Mediated by a Reduction in Mucosal Lymphocyte Activation and Infiltration in a Mouse Model of Intestinal Inflammation |
title_short | The Anti-Inflammatory Effect of Spray-Dried Plasma Is Mediated by a Reduction in Mucosal Lymphocyte Activation and Infiltration in a Mouse Model of Intestinal Inflammation |
title_sort | anti-inflammatory effect of spray-dried plasma is mediated by a reduction in mucosal lymphocyte activation and infiltration in a mouse model of intestinal inflammation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5084043/ https://www.ncbi.nlm.nih.gov/pubmed/27782068 http://dx.doi.org/10.3390/nu8100657 |
work_keys_str_mv | AT perezbosqueanna theantiinflammatoryeffectofspraydriedplasmaismediatedbyareductioninmucosallymphocyteactivationandinfiltrationinamousemodelofintestinalinflammation AT mirolluisa theantiinflammatoryeffectofspraydriedplasmaismediatedbyareductioninmucosallymphocyteactivationandinfiltrationinamousemodelofintestinalinflammation AT amatconcepcio theantiinflammatoryeffectofspraydriedplasmaismediatedbyareductioninmucosallymphocyteactivationandinfiltrationinamousemodelofintestinalinflammation AT polojavier theantiinflammatoryeffectofspraydriedplasmaismediatedbyareductioninmucosallymphocyteactivationandinfiltrationinamousemodelofintestinalinflammation AT moretomiquel theantiinflammatoryeffectofspraydriedplasmaismediatedbyareductioninmucosallymphocyteactivationandinfiltrationinamousemodelofintestinalinflammation AT perezbosqueanna antiinflammatoryeffectofspraydriedplasmaismediatedbyareductioninmucosallymphocyteactivationandinfiltrationinamousemodelofintestinalinflammation AT mirolluisa antiinflammatoryeffectofspraydriedplasmaismediatedbyareductioninmucosallymphocyteactivationandinfiltrationinamousemodelofintestinalinflammation AT amatconcepcio antiinflammatoryeffectofspraydriedplasmaismediatedbyareductioninmucosallymphocyteactivationandinfiltrationinamousemodelofintestinalinflammation AT polojavier antiinflammatoryeffectofspraydriedplasmaismediatedbyareductioninmucosallymphocyteactivationandinfiltrationinamousemodelofintestinalinflammation AT moretomiquel antiinflammatoryeffectofspraydriedplasmaismediatedbyareductioninmucosallymphocyteactivationandinfiltrationinamousemodelofintestinalinflammation |