Cargando…
Neural Networks for the Prediction of Organic Chemistry Reactions
[Image: see text] Reaction prediction remains one of the major challenges for organic chemistry and is a prerequisite for efficient synthetic planning. It is desirable to develop algorithms that, like humans, “learn” from being exposed to examples of the application of the rules of organic chemistry...
Autores principales: | Wei, Jennifer N., Duvenaud, David, Aspuru-Guzik, Alán |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2016
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5084081/ https://www.ncbi.nlm.nih.gov/pubmed/27800555 http://dx.doi.org/10.1021/acscentsci.6b00219 |
Ejemplares similares
-
Adiabatic Quantum Simulation of Quantum Chemistry
por: Babbush, Ryan, et al.
Publicado: (2014) -
A Mixed Quantum Chemistry/Machine Learning Approach
for the Fast and Accurate Prediction of Biochemical Redox Potentials
and Its Large-Scale Application to 315 000 Redox Reactions
por: Jinich, Adrian, et al.
Publicado: (2019) -
Phoenics: A Bayesian Optimizer for Chemistry
por: Häse, Florian, et al.
Publicado: (2018) -
Parallel tempered genetic algorithm guided by deep neural networks for inverse molecular design
por: Nigam, AkshatKumar, et al.
Publicado: (2022) -
Automatic Differentiation in Quantum Chemistry with
Applications to Fully Variational Hartree–Fock
por: Tamayo-Mendoza, Teresa, et al.
Publicado: (2018)