Cargando…
Population subdivision of hydrothermal vent polychaete Alvinella pompejana across equatorial and Easter Microplate boundaries
BACKGROUND: The Equator and Easter Microplate regions of the eastern Pacific Ocean exhibit geomorphological and hydrological features that create barriers to dispersal for a number of animals associated with deep-sea hydrothermal vent habitats. This study examined effects of these boundaries on geog...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5084463/ https://www.ncbi.nlm.nih.gov/pubmed/27793079 http://dx.doi.org/10.1186/s12862-016-0807-9 |
_version_ | 1782463386681868288 |
---|---|
author | Jang, Sook-Jin Park, Eunji Lee, Won-Kyung Johnson, Shannon B. Vrijenhoek, Robert C. Won, Yong-Jin |
author_facet | Jang, Sook-Jin Park, Eunji Lee, Won-Kyung Johnson, Shannon B. Vrijenhoek, Robert C. Won, Yong-Jin |
author_sort | Jang, Sook-Jin |
collection | PubMed |
description | BACKGROUND: The Equator and Easter Microplate regions of the eastern Pacific Ocean exhibit geomorphological and hydrological features that create barriers to dispersal for a number of animals associated with deep-sea hydrothermal vent habitats. This study examined effects of these boundaries on geographical subdivision of the vent polychaete Alvinella pompejana. DNA sequences from one mitochondrial and eleven nuclear genes were examined in samples collected from ten vent localities that comprise the species’ known range from 23°N latitude on the East Pacific Rise to 38°S latitude on the Pacific Antarctic Ridge. RESULTS: Multi-locus genotypes inferred from these sequences clustered the individual worms into three metapopulation segments — the northern East Pacific Rise (NEPR), southern East Pacific Rise (SEPR), and northeastern Pacific Antarctic Ridge (PAR) — separated by the Equator and Easter Microplate boundaries. Genetic diversity estimators were negatively correlated with tectonic spreading rates. Application of the isolation-with-migration (IMa2) model provided information about divergence times and demographic parameters. The PAR and NEPR metapopulation segments were estimated to have split roughly 4.20 million years ago (Mya) (2.42–33.42 Mya, 95 % highest posterior density, (HPD)), followed by splitting of the SEPR and NEPR segments about 0.79 Mya (0.07–6.67 Mya, 95 % HPD). Estimates of gene flow between the neighboring regions were mostly low (2 Nm < 1). Estimates of effective population size decreased with southern latitudes: NEPR > SEPR > PAR. CONCLUSIONS: Highly effective dispersal capabilities allow A. pompejana to overcome the temporal instability and intermittent distribution of active hydrothermal vents in the eastern Pacific Ocean. Consequently, the species exhibits very high levels of genetic diversity compared with many co-distributed vent annelids and mollusks. Nonetheless, its levels of genetic diversity in partially isolated populations are inversely correlated with tectonic spreading rates. As for many other vent taxa, this pioneering colonizer is similarly affected by local rates of habitat turnover and by major dispersal filters associated with the Equator and the Easter Microplate region. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12862-016-0807-9) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-5084463 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-50844632016-10-31 Population subdivision of hydrothermal vent polychaete Alvinella pompejana across equatorial and Easter Microplate boundaries Jang, Sook-Jin Park, Eunji Lee, Won-Kyung Johnson, Shannon B. Vrijenhoek, Robert C. Won, Yong-Jin BMC Evol Biol Research Article BACKGROUND: The Equator and Easter Microplate regions of the eastern Pacific Ocean exhibit geomorphological and hydrological features that create barriers to dispersal for a number of animals associated with deep-sea hydrothermal vent habitats. This study examined effects of these boundaries on geographical subdivision of the vent polychaete Alvinella pompejana. DNA sequences from one mitochondrial and eleven nuclear genes were examined in samples collected from ten vent localities that comprise the species’ known range from 23°N latitude on the East Pacific Rise to 38°S latitude on the Pacific Antarctic Ridge. RESULTS: Multi-locus genotypes inferred from these sequences clustered the individual worms into three metapopulation segments — the northern East Pacific Rise (NEPR), southern East Pacific Rise (SEPR), and northeastern Pacific Antarctic Ridge (PAR) — separated by the Equator and Easter Microplate boundaries. Genetic diversity estimators were negatively correlated with tectonic spreading rates. Application of the isolation-with-migration (IMa2) model provided information about divergence times and demographic parameters. The PAR and NEPR metapopulation segments were estimated to have split roughly 4.20 million years ago (Mya) (2.42–33.42 Mya, 95 % highest posterior density, (HPD)), followed by splitting of the SEPR and NEPR segments about 0.79 Mya (0.07–6.67 Mya, 95 % HPD). Estimates of gene flow between the neighboring regions were mostly low (2 Nm < 1). Estimates of effective population size decreased with southern latitudes: NEPR > SEPR > PAR. CONCLUSIONS: Highly effective dispersal capabilities allow A. pompejana to overcome the temporal instability and intermittent distribution of active hydrothermal vents in the eastern Pacific Ocean. Consequently, the species exhibits very high levels of genetic diversity compared with many co-distributed vent annelids and mollusks. Nonetheless, its levels of genetic diversity in partially isolated populations are inversely correlated with tectonic spreading rates. As for many other vent taxa, this pioneering colonizer is similarly affected by local rates of habitat turnover and by major dispersal filters associated with the Equator and the Easter Microplate region. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12862-016-0807-9) contains supplementary material, which is available to authorized users. BioMed Central 2016-10-28 /pmc/articles/PMC5084463/ /pubmed/27793079 http://dx.doi.org/10.1186/s12862-016-0807-9 Text en © The Author(s). 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Jang, Sook-Jin Park, Eunji Lee, Won-Kyung Johnson, Shannon B. Vrijenhoek, Robert C. Won, Yong-Jin Population subdivision of hydrothermal vent polychaete Alvinella pompejana across equatorial and Easter Microplate boundaries |
title | Population subdivision of hydrothermal vent polychaete Alvinella pompejana across equatorial and Easter Microplate boundaries |
title_full | Population subdivision of hydrothermal vent polychaete Alvinella pompejana across equatorial and Easter Microplate boundaries |
title_fullStr | Population subdivision of hydrothermal vent polychaete Alvinella pompejana across equatorial and Easter Microplate boundaries |
title_full_unstemmed | Population subdivision of hydrothermal vent polychaete Alvinella pompejana across equatorial and Easter Microplate boundaries |
title_short | Population subdivision of hydrothermal vent polychaete Alvinella pompejana across equatorial and Easter Microplate boundaries |
title_sort | population subdivision of hydrothermal vent polychaete alvinella pompejana across equatorial and easter microplate boundaries |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5084463/ https://www.ncbi.nlm.nih.gov/pubmed/27793079 http://dx.doi.org/10.1186/s12862-016-0807-9 |
work_keys_str_mv | AT jangsookjin populationsubdivisionofhydrothermalventpolychaetealvinellapompejanaacrossequatorialandeastermicroplateboundaries AT parkeunji populationsubdivisionofhydrothermalventpolychaetealvinellapompejanaacrossequatorialandeastermicroplateboundaries AT leewonkyung populationsubdivisionofhydrothermalventpolychaetealvinellapompejanaacrossequatorialandeastermicroplateboundaries AT johnsonshannonb populationsubdivisionofhydrothermalventpolychaetealvinellapompejanaacrossequatorialandeastermicroplateboundaries AT vrijenhoekrobertc populationsubdivisionofhydrothermalventpolychaetealvinellapompejanaacrossequatorialandeastermicroplateboundaries AT wonyongjin populationsubdivisionofhydrothermalventpolychaetealvinellapompejanaacrossequatorialandeastermicroplateboundaries |