Cargando…
Monomeric gremlin is a novel vascular endothelial growth factor receptor-2 antagonist
Angiogenesis plays a key role in various physiological and pathological conditions, including inflammation and tumor growth. The bone morphogenetic protein (BMP) antagonist gremlin has been identified as a novel pro-angiogenic factor. Gremlin promotes neovascular responses via a BMP-independent acti...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5085234/ https://www.ncbi.nlm.nih.gov/pubmed/27174917 http://dx.doi.org/10.18632/oncotarget.9286 |
Sumario: | Angiogenesis plays a key role in various physiological and pathological conditions, including inflammation and tumor growth. The bone morphogenetic protein (BMP) antagonist gremlin has been identified as a novel pro-angiogenic factor. Gremlin promotes neovascular responses via a BMP-independent activation of the vascular endothelial growth factor (VEGF) receptor-2 (VEGFR2). BMP antagonists may act as covalent or non-covalent homodimers or in a monomeric form, while VEGFRs ligands are usually dimeric. However, the oligomeric state of gremlin and its role in modulating the biological activity of the protein remain to be elucidated. Here we show that gremlin is expressed in vitro and in vivo both as a monomer and as a covalently linked homodimer. Mutagenesis of amino acid residue Cys141 prevents gremlin dimerization leading to the formation of gremlin(C141A) monomers. Gremlin(C141A) monomer retains a BMP antagonist activity similar to the wild-type dimer, but is devoid of a significant angiogenic capacity. Notably, we found that gremlin(C141A) mutant engages VEGFR2 in a non-productive manner, thus acting as receptor antagonist. Accordingly, both gremlin(C141A) and wild-type monomers inhibit angiogenesis driven by dimeric gremlin or VEGF-A(165). Moreover, by acting as a VEGFR2 antagonist, gremlin(C141A) inhibits the angiogenic and tumorigenic potential of murine breast and prostate cancer cells in vivo. In conclusion, our data show that gremlin exists in multiple forms endowed with specific bioactivities and provide new insights into the molecular bases of gremlin dimerization. Furthermore, we propose gremlin monomer as a new inhibitor of VEGFR2 signalling during tumor growth. |
---|