Cargando…

Satellite Cells Contribution to Exercise Mediated Muscle Hypertrophy and Repair

Satellite cells (SCs) are the most abundant skeletal muscle stem cells. They are widely recognized for their contributions to maintenance of muscle mass, regeneration and hypertrophy during the human life span. These cells are good candidates for cell therapy due to their self-renewal capabilities a...

Descripción completa

Detalles Bibliográficos
Autores principales: Bazgir, Behzad, Fathi, Rouhollah, Rezazadeh Valojerdi, Mojtaba, Mozdziak, Paul, Asgari, Alireza
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royan Institute 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5086326/
https://www.ncbi.nlm.nih.gov/pubmed/28042532
Descripción
Sumario:Satellite cells (SCs) are the most abundant skeletal muscle stem cells. They are widely recognized for their contributions to maintenance of muscle mass, regeneration and hypertrophy during the human life span. These cells are good candidates for cell therapy due to their self-renewal capabilities and presence in an undifferentiated form. Presently, a significant gap exists between our knowledge of SCs behavior and their application as a means for human skeletal muscle tissue repair and regeneration. Both physiological and pathological stimuli potentially affect SCs activation, proliferation, and terminal differentiation the former category being the focus of this article. Activation of SCs occurs following exercise, post-training micro-injuries, and electrical stimulation. Exercise, as a potent and natural stimulus, is at the center of numerous studies on SC activation and relevant fields. According to research, different exercise modalities end with various effects. This review article attempts to picture the state of the art of the SCs life span and their engagement in muscle regeneration and hypertrophy in exercise.