Cargando…
Comparative In Vitro Evaluation of Human Dental Pulp and Follicle Stem Cell Commitment
OBJECTIVE: Pulp and periodontal tissues are well-known sources of mesenchymal stem cells (MSCs) that provide a promising place in tissue engineering and regenerative medicine. The molecular mechanisms underlying commitment and differentiation of dental stem cells that originate from different dental...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royan Institute
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5086339/ https://www.ncbi.nlm.nih.gov/pubmed/28042545 |
Sumario: | OBJECTIVE: Pulp and periodontal tissues are well-known sources of mesenchymal stem cells (MSCs) that provide a promising place in tissue engineering and regenerative medicine. The molecular mechanisms underlying commitment and differentiation of dental stem cells that originate from different dental tissues are not fully understood. In this study, we have compared the expression levels of pluripotency factors along with immunological and developmentally-related markers in the culture of human dental pulp stem cells (hDPSCs), human dental follicle stem cells (hDFSCs), and human embryonic stem cells (hESCs). MATERIALS AND METHODS: In this experimental study, isolated human dental stem cells were investigated using quantitative polymerase chain reaction (qPCR), immunostaining, and fluorescence-activated cell sorting (FACS). Additionally, we conducted gene ontology (GO) analysis of differentially expressed genes and compared them between dental stem cells and pluripotent stem cells. RESULTS: The results demonstrated that pluripotency (OCT4 and SOX2) and immunological (IL-6 and TLR4) factors had higher expressions in hDFSCs, with the exception of the JAGGED-1/NOTCH1 ratio, c-MYC and NESTIN which expressed more in hDPSCs. Immunostaining of OCT4, SOX2 and c-MYC showed cytoplasmic and nucleus localization in both groups at similar passages. GO analysis showed that the majority of hDFSCs and hDPSCs populations were in the synthesis (S) and mitosis (M) phases of the cell cycle, respectively. CONCLUSION: This study showed different status of heterogeneous hDPSCs and hDFSCs in terms of stemness, differentiation fate, and cell cycle phases. Therefore, the different behaviors of dental stem cells should be considered based on clinical treatment variations. |
---|