Cargando…
Semisupervised Learning Based Disease-Symptom and Symptom-Therapeutic Substance Relation Extraction from Biomedical Literature
With the rapid growth of biomedical literature, a large amount of knowledge about diseases, symptoms, and therapeutic substances hidden in the literature can be used for drug discovery and disease therapy. In this paper, we present a method of constructing two models for extracting the relations bet...
Autores principales: | Feng, Qinlin, Gui, Yingyi, Yang, Zhihao, Wang, Lei, Li, Yuxia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5086401/ https://www.ncbi.nlm.nih.gov/pubmed/27822473 http://dx.doi.org/10.1155/2016/3594937 |
Ejemplares similares
-
Online Coregularization for Multiview Semisupervised Learning
por: Sun, Boliang, et al.
Publicado: (2013) -
Self-Trained LMT for Semisupervised Learning
por: Fazakis, Nikos, et al.
Publicado: (2016) -
Semisupervised Semantic Segmentation with Mutual Correction Learning
por: Xiao, Yifan, et al.
Publicado: (2022) -
mokapot: Fast
and Flexible Semisupervised Learning
for Peptide Detection
por: Fondrie, William E., et al.
Publicado: (2021) -
Iterative Nearest Neighborhood Oversampling in Semisupervised Learning from Imbalanced Data
por: Li, Fengqi, et al.
Publicado: (2013)