Cargando…

MicroRNA-146a Contributes to SCI Recovery via Regulating TRAF6 and IRAK1 Expression

MicroRNA-146a participates in spinal cord injury (SCI) recovery. Until recently, how miRNA-146a participates in SCI remained unclear. In this study, we tried to explore the roles of miRNA-146a in the recovery of SCI using a rat model. The expression of the probable target genes of miRNA-146a (includ...

Descripción completa

Detalles Bibliográficos
Autores principales: Wei, Jinsong, Wang, Jiafeng, Zhou, Yulan, Yan, Shouquan, Li, Keshen, Lin, Hongsheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5086513/
https://www.ncbi.nlm.nih.gov/pubmed/27830143
http://dx.doi.org/10.1155/2016/4013487
Descripción
Sumario:MicroRNA-146a participates in spinal cord injury (SCI) recovery. Until recently, how miRNA-146a participates in SCI remained unclear. In this study, we tried to explore the roles of miRNA-146a in the recovery of SCI using a rat model. The expression of the probable target genes of miRNA-146a (including IRAK1 and TARF6) as well as proinflammation cytokines were measured until 7 days after surgery in the three groups (sham group, SCI group, and miRNA-146a antagomir injection group). Also, the animals' motivations were estimated using Basso Beattie Bresnahan (BBB) during the whole experiment. A luciferase assay was performed to demonstrate that miRNA-146a could directly target the mRNAs of IRAK1 and TRAF6. Our experiments indicate that miRNA-146a inhibits proinflammatory cytokine secretion by suppressing IRAK1 and TRAF6 expression in the SCI model. In contrast, miRNA-146a may be upregulated by inflammatory mediators via the IRAK1/TRAF6 pathway in the spinal cord. As a negative feedback element, miRNA-146a could make sure that the expression of IRAK1- and TRAF6-mediated genes was under tight control. Thus, miRNA-146a may serve as a novel therapeutic target for SCI interventions.