Cargando…
Real-Time Estimation of Satellite-Derived PM(2.5) Based on a Semi-Physical Geographically Weighted Regression Model
The real-time estimation of ambient particulate matter with diameter no greater than 2.5 μm (PM(2.5)) is currently quite limited in China. A semi-physical geographically weighted regression (GWR) model was adopted to estimate PM(2.5) mass concentrations at national scale using the Aqua Moderate Reso...
Autores principales: | Zhang, Tianhao, Liu, Gang, Zhu, Zhongmin, Gong, Wei, Ji, Yuxi, Huang, Yusi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5086713/ https://www.ncbi.nlm.nih.gov/pubmed/27706054 http://dx.doi.org/10.3390/ijerph13100974 |
Ejemplares similares
-
Ground Level PM(2.5) Estimates over China Using Satellite-Based Geographically Weighted Regression (GWR) Models Are Improved by Including NO(2) and Enhanced Vegetation Index (EVI)
por: Zhang, Tianhao, et al.
Publicado: (2016) -
Implications of Nonstationary Effect on Geographically Weighted Total Least Squares Regression for PM(2.5) Estimation
por: Mokhtari, Arezoo, et al.
Publicado: (2021) -
The View from Afar: Satellite-Derived Estimates of Global PM(2.5)
por: Konkel, Lindsey
Publicado: (2015) -
Estimation of On‐Road PM(2.5) Distributions by Combining Satellite Top‐of‐Atmosphere With Microscale Geographic Predictors for Healthy Route Planning
por: Tong, Chengzhuo, et al.
Publicado: (2022) -
Study on PM2.5 pollution and the mortality due to lung cancer in China based on geographic weighted regression model
por: Cao, Qilong, et al.
Publicado: (2018)