Cargando…
Inferring Human Activity Recognition with Ambient Sound on Wireless Sensor Nodes
A wireless sensor network that consists of nodes with a sound sensor can be used to obtain context awareness in home environments. However, the limited processing power of wireless nodes offers a challenge when extracting features from the signal, and subsequently, classifying the source. Although m...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5087375/ https://www.ncbi.nlm.nih.gov/pubmed/27690026 http://dx.doi.org/10.3390/s16101586 |
_version_ | 1782463893235302400 |
---|---|
author | Salomons, Etto L. Havinga, Paul J. M. van Leeuwen, Henk |
author_facet | Salomons, Etto L. Havinga, Paul J. M. van Leeuwen, Henk |
author_sort | Salomons, Etto L. |
collection | PubMed |
description | A wireless sensor network that consists of nodes with a sound sensor can be used to obtain context awareness in home environments. However, the limited processing power of wireless nodes offers a challenge when extracting features from the signal, and subsequently, classifying the source. Although multiple papers can be found on different methods of sound classification, none of these are aimed at limited hardware or take the efficiency of the algorithms into account. In this paper, we compare and evaluate several classification methods on a real sensor platform using different feature types and classifiers, in order to find an approach that results in a good classifier that can run on limited hardware. To be as realistic as possible, we trained our classifiers using sound waves from many different sources. We conclude that despite the fact that the classifiers are often of low quality due to the highly restricted hardware resources, sufficient performance can be achieved when (1) the window length for our classifiers is increased, and (2) if we apply a two-step approach that uses a refined classification after a global classification has been performed. |
format | Online Article Text |
id | pubmed-5087375 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-50873752016-11-07 Inferring Human Activity Recognition with Ambient Sound on Wireless Sensor Nodes Salomons, Etto L. Havinga, Paul J. M. van Leeuwen, Henk Sensors (Basel) Article A wireless sensor network that consists of nodes with a sound sensor can be used to obtain context awareness in home environments. However, the limited processing power of wireless nodes offers a challenge when extracting features from the signal, and subsequently, classifying the source. Although multiple papers can be found on different methods of sound classification, none of these are aimed at limited hardware or take the efficiency of the algorithms into account. In this paper, we compare and evaluate several classification methods on a real sensor platform using different feature types and classifiers, in order to find an approach that results in a good classifier that can run on limited hardware. To be as realistic as possible, we trained our classifiers using sound waves from many different sources. We conclude that despite the fact that the classifiers are often of low quality due to the highly restricted hardware resources, sufficient performance can be achieved when (1) the window length for our classifiers is increased, and (2) if we apply a two-step approach that uses a refined classification after a global classification has been performed. MDPI 2016-09-27 /pmc/articles/PMC5087375/ /pubmed/27690026 http://dx.doi.org/10.3390/s16101586 Text en © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Salomons, Etto L. Havinga, Paul J. M. van Leeuwen, Henk Inferring Human Activity Recognition with Ambient Sound on Wireless Sensor Nodes |
title | Inferring Human Activity Recognition with Ambient Sound on Wireless Sensor Nodes |
title_full | Inferring Human Activity Recognition with Ambient Sound on Wireless Sensor Nodes |
title_fullStr | Inferring Human Activity Recognition with Ambient Sound on Wireless Sensor Nodes |
title_full_unstemmed | Inferring Human Activity Recognition with Ambient Sound on Wireless Sensor Nodes |
title_short | Inferring Human Activity Recognition with Ambient Sound on Wireless Sensor Nodes |
title_sort | inferring human activity recognition with ambient sound on wireless sensor nodes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5087375/ https://www.ncbi.nlm.nih.gov/pubmed/27690026 http://dx.doi.org/10.3390/s16101586 |
work_keys_str_mv | AT salomonsettol inferringhumanactivityrecognitionwithambientsoundonwirelesssensornodes AT havingapauljm inferringhumanactivityrecognitionwithambientsoundonwirelesssensornodes AT vanleeuwenhenk inferringhumanactivityrecognitionwithambientsoundonwirelesssensornodes |