Cargando…
Temporal Data-Driven Sleep Scheduling and Spatial Data-Driven Anomaly Detection for Clustered Wireless Sensor Networks
The spatial–temporal correlation is an important feature of sensor data in wireless sensor networks (WSNs). Most of the existing works based on the spatial–temporal correlation can be divided into two parts: redundancy reduction and anomaly detection. These two parts are pursued separately in existi...
Autores principales: | Li, Gang, He, Bin, Huang, Hongwei, Tang, Limin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5087390/ https://www.ncbi.nlm.nih.gov/pubmed/27690035 http://dx.doi.org/10.3390/s16101601 |
Ejemplares similares
-
Data Driven Performance Evaluation of Wireless Sensor Networks
por: Frery, Alejandro C., et al.
Publicado: (2010) -
Data-Driven Suboptimal Scheduling of Switched Systems
por: Zhang, Chi, et al.
Publicado: (2020) -
Recharging Schedule for Mitigating Data Loss in Wireless Rechargeable Sensor Network
por: Liu, Haolin, et al.
Publicado: (2018) -
Data-Driven Network Analysis for Anomaly Traffic Detection
por: Alam, Shumon, et al.
Publicado: (2023) -
Data-Driven Anomaly Detection Approach for Time-Series Streaming Data
por: Zhang, Minghu, et al.
Publicado: (2020)