Cargando…
QUEST: Eliminating Online Supervised Learning for Efficient Classification Algorithms
In this work, we introduce QUEST (QUantile Estimation after Supervised Training), an adaptive classification algorithm for Wireless Sensor Networks (WSNs) that eliminates the necessity for online supervised learning. Online processing is important for many sensor network applications. Transmitting r...
Autores principales: | Zwartjes, Ardjan, Havinga, Paul J. M., Smit, Gerard J. M., Hurink, Johann L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5087417/ https://www.ncbi.nlm.nih.gov/pubmed/27706071 http://dx.doi.org/10.3390/s16101629 |
Ejemplares similares
-
Diabetic retinopathy classification for supervised machine learning algorithms
por: Nakayama, Luis Filipe, et al.
Publicado: (2022) -
Self-Supervised Learning Methods for Label-Efficient Dental Caries Classification
por: Taleb, Aiham, et al.
Publicado: (2022) -
An Efficient Model for Lungs Nodule Classification Using Supervised Learning Technique
por: Eid Alazemi, Fayez, et al.
Publicado: (2023) -
Classification of Dysphonic Voices in Parkinson’s Disease with Semi-Supervised Competitive Learning Algorithm
por: Bao, Guidong, et al.
Publicado: (2022) -
EOG Signal Classification with Wavelet and Supervised Learning Algorithms KNN, SVM and DT
por: Hernández Pérez, Sandy Nohemy, et al.
Publicado: (2023)