Cargando…
Towards Real-Time Detection of Gait Events on Different Terrains Using Time-Frequency Analysis and Peak Heuristics Algorithm
Real-time detection of gait events can be applied as a reliable input to control drop foot correction devices and lower-limb prostheses. Among the different sensors used to acquire the signals associated with walking for gait event detection, the accelerometer is considered as a preferable sensor du...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5087422/ https://www.ncbi.nlm.nih.gov/pubmed/27706086 http://dx.doi.org/10.3390/s16101634 |
_version_ | 1782463905874837504 |
---|---|
author | Zhou, Hui Ji, Ning Samuel, Oluwarotimi Williams Cao, Yafei Zhao, Zheyi Chen, Shixiong Li, Guanglin |
author_facet | Zhou, Hui Ji, Ning Samuel, Oluwarotimi Williams Cao, Yafei Zhao, Zheyi Chen, Shixiong Li, Guanglin |
author_sort | Zhou, Hui |
collection | PubMed |
description | Real-time detection of gait events can be applied as a reliable input to control drop foot correction devices and lower-limb prostheses. Among the different sensors used to acquire the signals associated with walking for gait event detection, the accelerometer is considered as a preferable sensor due to its convenience of use, small size, low cost, reliability, and low power consumption. Based on the acceleration signals, different algorithms have been proposed to detect toe off (TO) and heel strike (HS) gait events in previous studies. While these algorithms could achieve a relatively reasonable performance in gait event detection, they suffer from limitations such as poor real-time performance and are less reliable in the cases of up stair and down stair terrains. In this study, a new algorithm is proposed to detect the gait events on three walking terrains in real-time based on the analysis of acceleration jerk signals with a time-frequency method to obtain gait parameters, and then the determination of the peaks of jerk signals using peak heuristics. The performance of the newly proposed algorithm was evaluated with eight healthy subjects when they were walking on level ground, up stairs, and down stairs. Our experimental results showed that the mean F1 scores of the proposed algorithm were above 0.98 for HS event detection and 0.95 for TO event detection on the three terrains. This indicates that the current algorithm would be robust and accurate for gait event detection on different terrains. Findings from the current study suggest that the proposed method may be a preferable option in some applications such as drop foot correction devices and leg prostheses. |
format | Online Article Text |
id | pubmed-5087422 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-50874222016-11-07 Towards Real-Time Detection of Gait Events on Different Terrains Using Time-Frequency Analysis and Peak Heuristics Algorithm Zhou, Hui Ji, Ning Samuel, Oluwarotimi Williams Cao, Yafei Zhao, Zheyi Chen, Shixiong Li, Guanglin Sensors (Basel) Article Real-time detection of gait events can be applied as a reliable input to control drop foot correction devices and lower-limb prostheses. Among the different sensors used to acquire the signals associated with walking for gait event detection, the accelerometer is considered as a preferable sensor due to its convenience of use, small size, low cost, reliability, and low power consumption. Based on the acceleration signals, different algorithms have been proposed to detect toe off (TO) and heel strike (HS) gait events in previous studies. While these algorithms could achieve a relatively reasonable performance in gait event detection, they suffer from limitations such as poor real-time performance and are less reliable in the cases of up stair and down stair terrains. In this study, a new algorithm is proposed to detect the gait events on three walking terrains in real-time based on the analysis of acceleration jerk signals with a time-frequency method to obtain gait parameters, and then the determination of the peaks of jerk signals using peak heuristics. The performance of the newly proposed algorithm was evaluated with eight healthy subjects when they were walking on level ground, up stairs, and down stairs. Our experimental results showed that the mean F1 scores of the proposed algorithm were above 0.98 for HS event detection and 0.95 for TO event detection on the three terrains. This indicates that the current algorithm would be robust and accurate for gait event detection on different terrains. Findings from the current study suggest that the proposed method may be a preferable option in some applications such as drop foot correction devices and leg prostheses. MDPI 2016-10-01 /pmc/articles/PMC5087422/ /pubmed/27706086 http://dx.doi.org/10.3390/s16101634 Text en © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhou, Hui Ji, Ning Samuel, Oluwarotimi Williams Cao, Yafei Zhao, Zheyi Chen, Shixiong Li, Guanglin Towards Real-Time Detection of Gait Events on Different Terrains Using Time-Frequency Analysis and Peak Heuristics Algorithm |
title | Towards Real-Time Detection of Gait Events on Different Terrains Using Time-Frequency Analysis and Peak Heuristics Algorithm |
title_full | Towards Real-Time Detection of Gait Events on Different Terrains Using Time-Frequency Analysis and Peak Heuristics Algorithm |
title_fullStr | Towards Real-Time Detection of Gait Events on Different Terrains Using Time-Frequency Analysis and Peak Heuristics Algorithm |
title_full_unstemmed | Towards Real-Time Detection of Gait Events on Different Terrains Using Time-Frequency Analysis and Peak Heuristics Algorithm |
title_short | Towards Real-Time Detection of Gait Events on Different Terrains Using Time-Frequency Analysis and Peak Heuristics Algorithm |
title_sort | towards real-time detection of gait events on different terrains using time-frequency analysis and peak heuristics algorithm |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5087422/ https://www.ncbi.nlm.nih.gov/pubmed/27706086 http://dx.doi.org/10.3390/s16101634 |
work_keys_str_mv | AT zhouhui towardsrealtimedetectionofgaiteventsondifferentterrainsusingtimefrequencyanalysisandpeakheuristicsalgorithm AT jining towardsrealtimedetectionofgaiteventsondifferentterrainsusingtimefrequencyanalysisandpeakheuristicsalgorithm AT samueloluwarotimiwilliams towardsrealtimedetectionofgaiteventsondifferentterrainsusingtimefrequencyanalysisandpeakheuristicsalgorithm AT caoyafei towardsrealtimedetectionofgaiteventsondifferentterrainsusingtimefrequencyanalysisandpeakheuristicsalgorithm AT zhaozheyi towardsrealtimedetectionofgaiteventsondifferentterrainsusingtimefrequencyanalysisandpeakheuristicsalgorithm AT chenshixiong towardsrealtimedetectionofgaiteventsondifferentterrainsusingtimefrequencyanalysisandpeakheuristicsalgorithm AT liguanglin towardsrealtimedetectionofgaiteventsondifferentterrainsusingtimefrequencyanalysisandpeakheuristicsalgorithm |