Cargando…
Adaptive Collaborative Gaussian Mixture Probability Hypothesis Density Filter for Multi-Target Tracking
In this paper, an adaptive collaborative Gaussian Mixture Probability Hypothesis Density (ACo-GMPHD) filter is proposed for multi-target tracking with automatic track extraction. Based on the evolutionary difference between the persistent targets and the birth targets, the measurements are adaptivel...
Autores principales: | Yang, Feng, Wang, Yongqi, Chen, Hao, Zhang, Pengyan, Liang, Yan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5087454/ https://www.ncbi.nlm.nih.gov/pubmed/27727177 http://dx.doi.org/10.3390/s16101666 |
Ejemplares similares
-
A Student’s t Mixture Probability Hypothesis Density Filter for Multi-Target Tracking with Outliers
por: Liu, Zhuowei, et al.
Publicado: (2018) -
Multi-Target Tracking Using an Improved Gaussian Mixture CPHD Filter
por: Si, Weijian, et al.
Publicado: (2016) -
Gaussian Mixture Cardinalized Probability Hypothesis Density(GM-CPHD): A Distributed Filter Based on the Intersection of Parallel Inverse Covariances
por: Wang, Liu, et al.
Publicado: (2023) -
Vehicle Detection Based on Probability Hypothesis Density Filter
por: Zhang, Feihu, et al.
Publicado: (2016) -
Adaptive filtering of microarray gene expression data based on Gaussian mixture decomposition
por: Marczyk, Michal, et al.
Publicado: (2013)