Cargando…
Reduction of Kinematic Short Baseline Multipath Effects Based on Multipath Hemispherical Map
Multipath hemispherical map (MHM) is a kind of multipath mitigation approach that takes advantage of the spatial repeatability of the multipath effect under an unchanged environment. This approach is not only suitable for static environments, but also for some kinematic platforms, such as a moving s...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5087465/ https://www.ncbi.nlm.nih.gov/pubmed/27754322 http://dx.doi.org/10.3390/s16101677 |
_version_ | 1782463916623790080 |
---|---|
author | Cai, Miaomiao Chen, Wen Dong, Danan Song, Le Wang, Minghua Wang, Zhiren Zhou, Feng Zheng, Zhengqi Yu, Chao |
author_facet | Cai, Miaomiao Chen, Wen Dong, Danan Song, Le Wang, Minghua Wang, Zhiren Zhou, Feng Zheng, Zhengqi Yu, Chao |
author_sort | Cai, Miaomiao |
collection | PubMed |
description | Multipath hemispherical map (MHM) is a kind of multipath mitigation approach that takes advantage of the spatial repeatability of the multipath effect under an unchanged environment. This approach is not only suitable for static environments, but also for some kinematic platforms, such as a moving ship and airplane, where the dominant multipath effects come from the platform itself and the multipath effects from the surrounding environment are considered minor or negligible. Previous studies have verified the feasibility of the MHM approach in static environments. In this study, we expanded the MHM approach to a kinematic shipborne environment. Both static and kinematic tests were carried out to demonstrate the feasibility of the MHM approach. The results indicate that, after MHM multipath mitigation, the root mean square (RMS) of baseline length deviations are reduced by 10.47% and 10.57%, and the RMS of residual values are reduced by 39.89% and 21.91% for the static and kinematic tests, respectively. Power spectrum analysis has shown that the MHM approach is more effective in mitigating multipath in low-frequency bands; the high-frequency multipath effects still exist, and are indistinguishable from observation noise. Taking the observation noise into account, the residual reductions increase to 41.68% and 24.51% in static and kinematic tests, respectively. To further improve the performance of MHM for kinematic platforms, we also analyzed the influence of spatial coverage and resolution on residual reduction. |
format | Online Article Text |
id | pubmed-5087465 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-50874652016-11-07 Reduction of Kinematic Short Baseline Multipath Effects Based on Multipath Hemispherical Map Cai, Miaomiao Chen, Wen Dong, Danan Song, Le Wang, Minghua Wang, Zhiren Zhou, Feng Zheng, Zhengqi Yu, Chao Sensors (Basel) Article Multipath hemispherical map (MHM) is a kind of multipath mitigation approach that takes advantage of the spatial repeatability of the multipath effect under an unchanged environment. This approach is not only suitable for static environments, but also for some kinematic platforms, such as a moving ship and airplane, where the dominant multipath effects come from the platform itself and the multipath effects from the surrounding environment are considered minor or negligible. Previous studies have verified the feasibility of the MHM approach in static environments. In this study, we expanded the MHM approach to a kinematic shipborne environment. Both static and kinematic tests were carried out to demonstrate the feasibility of the MHM approach. The results indicate that, after MHM multipath mitigation, the root mean square (RMS) of baseline length deviations are reduced by 10.47% and 10.57%, and the RMS of residual values are reduced by 39.89% and 21.91% for the static and kinematic tests, respectively. Power spectrum analysis has shown that the MHM approach is more effective in mitigating multipath in low-frequency bands; the high-frequency multipath effects still exist, and are indistinguishable from observation noise. Taking the observation noise into account, the residual reductions increase to 41.68% and 24.51% in static and kinematic tests, respectively. To further improve the performance of MHM for kinematic platforms, we also analyzed the influence of spatial coverage and resolution on residual reduction. MDPI 2016-10-12 /pmc/articles/PMC5087465/ /pubmed/27754322 http://dx.doi.org/10.3390/s16101677 Text en © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Cai, Miaomiao Chen, Wen Dong, Danan Song, Le Wang, Minghua Wang, Zhiren Zhou, Feng Zheng, Zhengqi Yu, Chao Reduction of Kinematic Short Baseline Multipath Effects Based on Multipath Hemispherical Map |
title | Reduction of Kinematic Short Baseline Multipath Effects Based on Multipath Hemispherical Map |
title_full | Reduction of Kinematic Short Baseline Multipath Effects Based on Multipath Hemispherical Map |
title_fullStr | Reduction of Kinematic Short Baseline Multipath Effects Based on Multipath Hemispherical Map |
title_full_unstemmed | Reduction of Kinematic Short Baseline Multipath Effects Based on Multipath Hemispherical Map |
title_short | Reduction of Kinematic Short Baseline Multipath Effects Based on Multipath Hemispherical Map |
title_sort | reduction of kinematic short baseline multipath effects based on multipath hemispherical map |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5087465/ https://www.ncbi.nlm.nih.gov/pubmed/27754322 http://dx.doi.org/10.3390/s16101677 |
work_keys_str_mv | AT caimiaomiao reductionofkinematicshortbaselinemultipatheffectsbasedonmultipathhemisphericalmap AT chenwen reductionofkinematicshortbaselinemultipatheffectsbasedonmultipathhemisphericalmap AT dongdanan reductionofkinematicshortbaselinemultipatheffectsbasedonmultipathhemisphericalmap AT songle reductionofkinematicshortbaselinemultipatheffectsbasedonmultipathhemisphericalmap AT wangminghua reductionofkinematicshortbaselinemultipatheffectsbasedonmultipathhemisphericalmap AT wangzhiren reductionofkinematicshortbaselinemultipatheffectsbasedonmultipathhemisphericalmap AT zhoufeng reductionofkinematicshortbaselinemultipatheffectsbasedonmultipathhemisphericalmap AT zhengzhengqi reductionofkinematicshortbaselinemultipatheffectsbasedonmultipathhemisphericalmap AT yuchao reductionofkinematicshortbaselinemultipatheffectsbasedonmultipathhemisphericalmap |